Exercise 1 - Foundations of Cryptography 89-856/653

Due Date: 17th March 2019

Honour code: You are expected to solve all exercises on an individual basis. It is highly recommended that you spend a considerable amount of effort on the exercises before discussing the solutions with anyone. If you do discuss the exercises, the actual solutions must be written by yourself. You may also not use solutions that can be obtained from other sources (e.g., the Internet). I cannot enforce most of these rules, but have a strong expectation that you will abide by them.

Exercise 1: Show that the addition function $f(x, y)=x+y$ (where $|x|=|y|$ and x and y are interpreted as natural numbers) is not one-way.

Exercise 2: Prove that if there exist one-way functions, then there exists a one-way function f such that for every $n, f\left(0^{n}\right)=0^{n}$. Provide a full (formal) proof of your answer. Note that this demonstrates that for infinitely many values x, the function f is easy to invert. Why does this not contradict one-wayness?

Exercise 3: A function f is said to be length regular if for every $x, y \in\{0,1\}^{*}$ such that $|x|=|y|$, it holds that $|f(x)|=|f(y)|$. Show that if there exist one-way functions, then there exist lengthregular one-way functions. Provide a full (formal) proof of your answer.

Hint: Let f be a one-way function and let $p(\cdot)$ be a polynomial such that for every $x,|f(x)| \leq$
 length-regular and one-way.

Exercise 4: Prove that if there exist collections of one-way functions, then there also exist oneway functions. Can you say the same for 1-1 one-way functions? Explain.

Exercise 5: Assume that $\mathcal{P} \neq \mathcal{N} \mathcal{P}$. Show that there exists a function that is easy to compute and hard to invert by deterministic algorithms in the worst case, but is not one-way.

Exercise 6: Let $x \in\{0,1\}^{n}$ and denote $x=x_{1} \cdots x_{n}$. Prove that if there exist one-way functions, then there exists a one-way function f such that for every i there exists an algorithm A_{i} such that,

$$
\operatorname{Pr}_{x \leftarrow U_{n}}\left[A_{i}(f(x))=x_{i}\right] \geq \frac{1}{2}+\frac{1}{2 n}
$$

We note that $x \leftarrow U_{n}$ means that x is chosen according to the uniform distribution over $\{0,1\}^{n}$. (This exercise demonstrates that it is not possible to claim that every one-way function hides at least one specific bit of the input.)

