Introduction to Coding Theory 89-662

Final Exam, Moed Aleph 2009

Exam instructions: The exam is closed book: no material is allowed! Answer all questions and formally prove all of your answers. The exam time is 2.5 hours.

Question 1 (25 points):

1. Formally define the notion of local decodability, and show that the Walsh-Hadamard code is 2-locally decodable with $\delta \leq \frac{1}{4}$.
2. Prove that if C is an $[n, k]$ code such that C^{\perp} has distance $d \geq \ell+1$, then C is not ($\ell-1$)-locally decodable.
3. Prove that there exists a code of length n that is 1-locally decodable for $\delta<\frac{1}{2}$.

Question 2 (15 points): Show that if there exists a linear code C with parameters $[n, k, d]$ where d is even, then there exists a linear code C^{\prime} with parameters $[n, k, d]$ such that every codeword has even weight.

Question 3 (30 points): Let C be a binary linear code and denote by \bar{C} the code derived by taking the complement of all words in C.

1. Show that if the word $(1, \ldots, 1) \in C$ then $C=\bar{C}$.
2. Prove or refute: \bar{C} is a linear code.
3. Prove or refute: $C \cup \bar{C}$ is a linear code.

Question 4 (30 points):

1. Let C be a linear $[n, k, d]$ MDS code over \mathbb{F}_{q}, and let $I \subseteq\{1, \ldots, n\}$ be a subset of exactly k coordinates. Denote $I=\left\{i_{1}, \ldots, i_{k}\right\}$. Show that for all $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{F}_{q}$ there exists a unique codeword $c \in C$ such that $c_{i_{j}}=\alpha_{j}$ (where $c=\left(c_{1}, \ldots, c_{n}\right)$).

Hint: Define a linear transformation projecting the code onto the subset of k coordinates. Then, use the theorem from linear algebra stating that if $T: U \rightarrow V$ is a linear transformation from a vector subspace U to a vector subspace V, then $\operatorname{dim}(\operatorname{Im}(T))+\operatorname{dim}(\operatorname{Ker}(T))=$ $\operatorname{dim}(U)$, where

$$
\operatorname{Im}(T)=\{v \in V \mid \exists u \in U \text { s.t. } T(u)=v\}
$$

and

$$
\operatorname{Ker}(T)=\{u \in U \text { s.t. } T(u)=0\}
$$

2. Use the above to calculate (with a proof) the number of codewords with weight exactly $n-k+1$ in any MDS code over a field \mathbb{F}_{q} of exactly q elements.

Hint: Look at the case of $\alpha_{1}, \ldots, \alpha_{k}$ where exactly one $\alpha_{j} \neq 0$ and consider what the other coordinates could be.

