Introduction to Coding Theory 89-662

Final Exam, Moed Aleph 2008

Exam instructions:

1. Closed book: no material is allowed
2. Answer all questions
3. Time: 2.5 hours

4. Good luck!

Question 1 (15 points): Describe a binary linear code with parameters $\left[n, \log _{2}(n+1), \frac{n+1}{2}\right]$ (equivalently, with parameters $\left[2^{k}-1, k, 2^{k-1}\right]$). Provide a full proof that your construction is a binary linear code and that it meets these parameters.

Question 2 ($\mathbf{3 0}$ points): Prove the following. Let $\delta>0$ and $\epsilon>0$ be any constants and let d be any natural number. Then, for large enough k and n fulfilling $\frac{k}{n}=1-H(d / n)-\delta$, there exist a pair of functions (E, D) where $E:\{0,1\}^{k} \rightarrow\{0,1\}^{n}$ and $D:\{0,1\}^{n} \rightarrow\{0,1\}^{k}$ such that for every vector $e \in\{0,1\}^{n}$ with $w t(e) \leq d$ it holds that

$$
\operatorname{Pr}_{x \leftarrow\{0,1\}^{k}}[D(E(x)+e) \neq x] \leq \epsilon
$$

In what way does the above differ from Shannon's theorem?
Question 3 (20 points): Let C_{i} be an $\left[n, k_{i}, d_{i}\right]$ linear code over F_{q} for $i=1,2$. Define

$$
C=\left\{(a+c, b+c, a+b+c) \mid a, b \in C_{1}, c \in C_{2}\right\}
$$

1. Show that C is a $\left[3 n, 2 k_{1}+k_{2}\right]$ linear code
2. Find a generator matrix G of C, given generator matrices G_{1} and G_{2} of C_{1} and C_{2} respectively.
3. Find a parity-check matrix H of C given H_{1} and H_{2}.
4. What can you say about the minimum distance of C ?

Question 4 (20 points): Show that any coset of a linear perfect code is a perfect code. When is the resulting code linear and when is it not linear?

Question 5 (15 points): A code C is cyclic if for every codeword $c \in C$ it holds that a cyclic shift of c is also in C. That is, let $c=c_{1} \cdots c_{n-1} c_{n}$, then $c_{n} c_{1} \cdot c_{n-1} \in C$. Show that the Reed-Solomon code is cyclic.

