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Abstract

In the setting of multi-party computation, sets of two or more parties with private inputs wish

to jointly compute some (predetermined) function of their inputs. This computation should be

such that the outputs received by the parties are correctly distributed, and none of the parties

learn anything beyond their prescribed output. This encompasses any distributed computing task

and includes computations as simple as coin-tossing and broadcast, and as complex as electronic

voting, electronic auctions, electronic cash schemes and anonymous transactions. The feasibility

(and infeasibility) of multi-party computation has been extensively studied, resulting in a seemingly

comprehensive understanding of what can and cannot be securely computed, and under what

assumptions. However, most of this research relates only to the stand-alone setting, in which a

single set of parties execute a single protocol in isolation. In contrast, in modern network settings,

it is usually the case that many parties run many protocol executions. In this thesis, we study the

feasibility of secure multi-party computation under this more realistic setting of general composition

of protocols and executions. The main results presented are as follows:

1. We show that the basic task of achieving secure broadcast is strictly harder under composition.

Speci�cally, in the stand-alone model, it is known that digital signatures can be used in order

to obtain broadcast that is secure for any number of corrupted parties. In contrast, we

show that it is impossible to obtain a secure broadcast protocol that composes in parallel or

concurrently (even assuming digital signatures), unless one assumes that strictly less than

one third of the parties are corrupted.

2. The above impossibility result has a serious impact on the composition of secure multi-party

protocols (when a third or more of the parties may be corrupted). This is because all known

protocols for secure multi-party computation assume a broadcast channel, and implement this

channel in a point-to-point network using a protocol for secure broadcast. Therefore, these

multi-party protocols do not compose. We bypass this problem as follows. First, we provide

a new de�nition of secure multi-party computation that is a mild relaxation of previous

de�nitions. Next, we show that under this de�nition, secure computation of any function can

be achieved without broadcast by adapting known protocols. As a corollary we obtain secure

multi-party protocols that compose (concurrently, when an honest majority is assumed, and

in parallel when any number of parties may be corrupted).

3. Finally, we study the feasibility of obtaining \universally composable" secure multi-party

computation. The composition operation considered in the framework of universal compos-

ability is very general. In particular, it guarantees that a secure protocol remains secure

even when run concurrently with other arbitrary protocols. This captures the security re-

quirements of protocols in real settings (like that of the Internet). Previously, it has been

shown that when a majority of the parties are assumed to be honest, universally composable

protocols can be constructed for any functionality (in the standard model). It has also been
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shown that when only a minority of the parties are honest, there are important functionali-

ties that cannot be securely realized in a universally composable way in the standard model.

Thus, an important open question is whether or not there exists a reasonable model in which

universally composable multi-party computation of general functionalities can be achieved,

for an honest minority. We show that in the common reference string model, universally

composable protocols exist for any two-party and multi-party functionality and for any num-

ber of corrupted parties. This result establishes the feasibility of obtaining secure two-party

and multi-party computation (without an honest majority) under the most stringent security

de�nition currently known.
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Chapter 1

Introduction

1.1 Secure Computation

In a secure multi-party computation, a set of n parties with private inputs wish to jointly and

securely perform a computation based on their individual inputs. This computation should be such

that each party receives its correct output (correctness), and none of the parties learn anything

beyond their prescribed output (privacy). For example, in an election protocol, correctness ensures

that no coalition of parties can inuence the outcome of the election beyond just voting for their

preferred candidate, whereas privacy ensures that no parties learn anything about the individual

votes of other parties. Secure multi-party computation can be viewed as the task of carrying out

a distributed computation, while protecting honest parties from the malicious intents of dishonest

(or corrupted) parties. Speci�cally, a protocol execution involves the n participating parties and an

adversary who has control over a subset of t of these parties. The adversary is therefore an active,

inside attacker who attempts to somehow \harm" the honest participants (e.g., in an election, the

adversary may attempt to sway the outcome or learn the honest parties' private votes).

Security in multi-party computation. A number of di�erent de�nitions have been proposed

for secure multi-party computation. These de�nitions aim to ensure a number of important security

properties. The most central of these are:

� Privacy: No party should learn anything more than its prescribed output. In particular, the

only information that should be learned about other parties' inputs is what can be derived from

the output itself.

� Correctness: Each party is guaranteed that the output that it receives is correct.

� Independence of Inputs: Corrupted parties must choose their inputs independently of the honest

parties' inputs.

� Guaranteed Output Delivery: Corrupted parties should not be able to prevent honest parties

from receiving their output. In other words, the adversary should not be able to carry out a

denial of service attack.

� Fairness: Corrupted parties should receive their outputs if and only if the honest parties also

receive their outputs. The scenario where a corrupted party obtains output and an honest party

does not should not be allowed to occur.

1



2 CHAPTER 1. INTRODUCTION

The standard de�nition today (cf. [13] following [53, 4, 69]) formalizes the above requirements (and

others) in the following general way. Consider an ideal world in which an external trusted party is

willing to help the parties carry out their computation. An ideal computation takes place in the

ideal world by having the parties simply send their inputs to the trusted party who computes the

desired function and passes each party its prescribed output. Notice that all of the above security

properties (and more) are ensured in this ideal computation. The security of a real protocol is

established by comparing the outcome of the protocol to the outcome of an ideal computation.

Speci�cally, a real protocol that is run by the parties (in a world where no trusted party exists)

is said to be secure, if no adversary controlling a coalition of corrupted parties can do more harm

in a real execution that in the above ideal computation. This is stated more formally as follows:

for any adversary attacking a real protocol execution there exists an adversary attacking an ideal

execution such that the input/output distributions of the parties in the real and ideal executions

are essentially the same. Since the adversary is unable to cause any harm in an ideal execution,

this means that security is also guaranteed in a real protocol execution.

We remark that the above informal description is \overly ideal" in the following sense. It is a

known fact that unless an honest majority is assumed, it is impossible to obtain general protocols

for secure multi-party computation that guarantee output delivery and fairness (e.g. [58, 23]).

These requirements are therefore relaxed when no honest majority is assumed. In particular, under

certain circumstances, honest parties may not receive their prescribed output, and fairness is not

always guaranteed. In fact, a number of di�erent levels of fairness have been considered. On one

extreme, complete fairness states that corrupted parties receive their outputs if and only if honest

parties receive their outputs (this is the notion of fairness described above). On the other extreme,

no fairness states that corrupted parties may receive their outputs even if honest parties do not.

An intermediate notion called partial fairness has the following property. There exists a speci�ed

party (say P

1

) such that if P

1

is honest then complete fairness is achieved. However, if P

1

is corrupt

then no fairness is achieved. That is, sometimes fairness is obtained and sometimes it is not (and

the fairness is thus partial).

Feasibility of secure multi-party computation. Wide reaching feasibility results regarding

secure multi-party computation were presented in the mid to late 1980's. The most central of these

are as follows (recall that t equals the number of corrupted parties):

1. For t < n=3, secure multi-party protocols (with complete fairness and guaranteed output

delivery) can be achieved for any function in a point-to-point network and without any setup

assumptions. This can be achieved both in the computational setting [52] (assuming the

existence of trapdoor permutations), and in the information theoretic (private channel) setting

[10, 22].

1

2. For t < n=2, secure multi-party protocols (with complete fairness and guaranteed output

delivery) can be achieved for any function assuming that the parties have access to a broadcast

1

In the information theoretic setting of secure computation, the adversary is not bound to any complexity class (and

in particular, is not assumed to be polynomial-time). Results in this model require no complexity or cryptographic

assumptions and hold unconditionally. The only assumption used is that parties are connected via ideally private

channels (i.e., it is assumed that the adversary cannot eavesdrop on the communication between honest parties).

In contrast, in the computational setting the adversary is assumed to be a probabilistic polynomial-time machine

(or a polynomial-size family of circuits). Results in this model typically assume cryptographic assumptions like the

existence of trapdoor permutations. We note that in this model, it is not necessary to assume that the parties have

access to ideally private channels (because such channels can be implemented using public-key encryption).
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channel. This can be achieved in the computational setting [52] (with the same assumptions

as above), and in the information theoretic setting [76].

3. For t � n=2, secure multi-party protocols with partial fairness (and without guaranteeing

output delivery) can be achieved assuming that the parties have access to a broadcast channel

and in addition assuming the existence of trapdoor permutations [81, 52, 44]. Some works

attempting to provide higher levels of fairness have also appeared [81, 42, 53, 8].

We stress that all of the above results have been proven in the stand-alone model of computation

only. However, the fact that a protocol is secure in the stand-alone model does not (necessarily)

mean that it remains secure when run in a multi-execution setting. This leads us to ask the following

fundamental question: Do analogous feasibility results hold in more general multi-execution settings

(i.e., under composition)?

1.2 Protocol Composition

In general, the notion of \protocol composition" refers to a setting where the participating parties

are involved in many protocol executions. Furthermore, the honest parties participate in each

execution as if it is running in isolation (and therefore obliviously of the other executions taking

place). In particular, this means that honest parties are not required to coordinate between di�erent

executions or remember the history of past executions. Requiring parties to coordinate between

executions is highly undesirable and sometimes may even be impossible (e.g., it is hard to imagine

successful coordination between protocols that are designed independently of each other). We note

that in contrast to the honest parties, we assume that the adversary may coordinate its actions

between the protocol executions. This asymmetry is due to the fact that some level of coordination

is clearly possible. Thus, although it is undesirable to rely on it in the construction of protocols, it

would be careless to assume that the adversary cannot utilize it to some extent.

1.2.1 Types of Protocol Composition

As we have described, the notion of protocol composition relates to settings in which many protocol

executions take place. However, there are actually many ways to interpret this notion. We describe

two important interpretations here:

1. Self-composition: In the stand-alone model, a single set of parties carry out a single protocol

execution. Furthermore, these parties are assumed to be the only parties in the network. In

contrast, a protocol is said to self-compose (or compose with respect to itself) if it remains

secure when a single set of parties carry out many protocol executions. We stress that the

honest parties run each protocol execution obliviously of the other executions. In summary,

in self-composition, the same set of parties run many independent copies of the same protocol

(and it is assumed that they are the only parties in the network).

2

2. General-composition: In this type of composition, many sets of parties carry out many ex-

ecutions of arbitrary protocols. Thus, general-composition di�ers from self-composition in

the following two ways. First, di�erent sets of (possibly overlapping) parties interact in the

2

Another type of self-composition considers a scenario where many sets of parties carry out executions of the same

protocol. The model studied in work on non-malleability [32] falls under this category. In particular, they consider

two pairs of parties running the same protocol concurrently and an adversary who controls the 2nd party in the 1st

execution and the 1st party in the 2nd execution.
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network. Second, the parties run arbitrary protocols that may be designed independently of

each other. A protocol is said to maintain security under general-composition if its security

(as de�ned by comparing it to an ideal execution) is maintained even when it is run in such

a scenario.

In both of the above notions of composition, many protocol executions take place. However the

scheduling of these executions is also an important factor when considering composition. We now

describe the three main types of scheduling that appear in the literature:

1. Sequential: a new execution begins strictly after the previous one terminates.

2. Parallel: all executions begin at the same time and proceed at the same rate (i.e., in a

synchronous fashion).

3. Concurrent: the scheduling of the protocol executions, including when they start and the rate

at which they proceed, is maliciously determined by the adversary. That is, the adversary

has full control over when messages sent by the parties are delivered (as is typical in an

asynchronous network).

Another type of scheduling, called concurrent with timing [33], lies somewhere between parallel

and concurrent scheduling. Here, the adversary can determine when protocols begin but is limited

in its ability to vary the rate at which the protocols proceed. (In particular, the adversary cannot

delay the delivery of messages for an arbitrary long period of time.)

1.2.2 Feasibility of Protocol Composition

Most of the research on protocol composition considers the question of obtaining security under

self-composition. Much of this research has been focused on zero-knowledge. Speci�cally, it has

been shown that sequential composition of (auxiliary input) zero-knowledge always holds [51],

whereas parallel composition does not necessarily hold [48]. In contrast, zero-knowledge protocols

that do compose in parallel have been demonstrated [47, 46]. The question of zero-knowledge that

composes concurrently was initiated by [33] who considered the above-mentioned timing model. The

feasibility of concurrent zero-knowledge with arbitrary scheduling was later demonstrated by [77].

In general, the issue of concurrent zero-knowledge has received much attention, culminating in a

rather exact characterization of the round complexity of black-box concurrent zero-knowledge [61,

79, 17, 60, 74] (work on non black-box concurrent zero-knowledge appears in [1]). Another speci�c

problem that has been studied in the context of concurrent self-composition is that of oblivious

transfer [43]. We stress that all of the above work deals with self-composition only.

In addition to the above work on speci�c protocol problems, research has been carried out

regarding the composition of protocols for (general) secure multi-party computation. This research

is typically more de�nitional in nature. That is, papers present a de�nition, show that protocols

compose under this de�nition, and then (hopefully) proceed to present protocols that achieve

the de�nition.

3

The sequential composition of secure multi-party protocols was considered both

regarding self-composition [5], and general-composition [69, 13]. It seems safe to say that we have

a good understanding of the sequential composition of protocols. For example, it is known that

any multi-party functionality can be securely computed under sequential general-composition, and

for any number of corrupted parties [52, 13].

3

This is in contrast to the work on the composition of zero-knowledge, for example, where the de�nition is generally

accepted and the challenge is in �nding protocols that meet the de�nition.
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Recently, a robust notion of security, called universal composability, was put forward in [14].

This de�nition follows the standard paradigm of comparing a real protocol execution to an ideal

model involving a trusted party. However, it also di�ers in a very important way. The traditional

model considered for secure computation includes the parties running the protocol, plus an adver-

sary A that controls a set of corrupted parties. However, in the universally composable framework,

an additional adversarial entity called the environment Z is introduced. This environment gener-

ates the inputs to all parties, reads all outputs, and in addition interacts with the adversary in an

arbitrary way throughout the computation. (As is hinted by its name, Z represents the external

environment that consists of arbitrary protocol executions that may be running concurrently with

the given protocol.) A protocol is said to securely realize a given functionality f if for any real-model

adversary A that interacts with the protocol, there exists an ideal-model adversary A

0

, such that

no environment Z can tell whether it is interacting with A and parties running the protocol, or

with A

0

and parties that are running in the ideal model for f . Such a protocol is called universally

composable. (In a sense, Z serves as an \interactive distinguisher" between a run of the protocol

and an ideal execution involving a trusted party.) The importance of this new de�nition is due to a

\composition theorem" that states that any universally composable protocol remains secure under

concurrent general-composition [14]. An important advantage of universally composable security is

that it enables the modular design of protocols. In particular, it is not necessary to design an entire

\secure system". Rather, protocols are designed independently and once proven secure (under this

de�nition), can be safely run in any system.

It has been shown that in the case of an honest majority, universally composable protocols

exist for any multi-party functionality [14] (building on [10, 76]). However, prior to our work,

very little was known of the honest minority and two-party cases. Additional work on parallel and

concurrent general-composition in more limited settings appears in [30] who deal speci�cally with

the information theoretic setting and assume ideally private channels, and in [73] who relate to

a setting where a single protocol execution takes place concurrently to another arbitrary protocol

(that is, the \amount" of concurrency is strictly limited).

We conclude that the question of general and self composition of multi-party protocols when

an honest majority is not assumed was largely unanswered. In particular, it was not known how

to achieve concurrent general-composition, or even concurrent self-composition. The parallel case

has also received almost no attention. Speci�cally, nothing was known regarding parallel general-

composition and there is no protocol for which security under parallel self-composition has been

proved.

4

In this thesis, we solve some of these questions.

1.3 Our Results

This thesis studies the feasibility of protocols under di�erent types of composition. We present

lower bounds regarding the fault tolerance of broadcast protocols that remain secure under parallel

self-composition. This result has a signi�cant impact on the composability of secure multi-party

protocols as they typically rely extensively on the use of a broadcast primitive. Nevertheless, we

show that the lower bound can be bypassed in the context of secure multi-party computation

such that concurrent and parallel self-composition can be achieved. Finally, we present universally

composable protocols for securely realizing any multi-party functionality in the common reference

4

We conjecture that the protocol of [52] self composes in parallel when the zero-knowledge proofs and proofs of

knowledge used are such that simulation and knowledge extraction can be executed under parallel composition. We

have not veri�ed this conjecture.
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string model.

5

(Recall that such protocols achieve concurrent general-composition.) Each chapter

of this thesis is preceded by a detailed introduction. Here, we briey state the results and explain

how they relate to each other.

1.3.1 The Composition of Authenticated Byzantine Agreement

We begin by studying the speci�c and basic problem of achieving secure broadcast in a point-to-

point network. This problem is known as Byzantine Agreement (or Generals) and has been the focus

of much research. Pease et al. [71, 62] showed that Byzantine Agreement can be achieved in the

standard model if and only if strictly less than 1=3 of the parties may be corrupted. They further

showed that by augmenting the network with a public-key infrastructure for digital signatures, it is

possible to obtain secure protocols for any number of corrupted parties. This augmented problem

is called \authenticated Byzantine Agreement".

We ask whether protocols for authenticated Byzantine Agreement self-compose in parallel or

concurrently. This question is answered in the negative. In fact, we prove an impossibility result

stating that authenticated Byzantine Agreement cannot be self-composed in parallel (even twice),

if 1=3 or more of the parties are corrupted. In contrast, it is easily shown that any protocol for

Byzantine Agreement in the standard model self-composes concurrently. Thus, on the one hand,

if less than 1=3 of the parties are corrupted, protocols for Byzantine Agreement in the standard

(i.e., \non-authenticated") model can be used, and composition is achieved. On the other hand, if

1=3 or more of the parties are corrupted (and parallel or concurrent composition is required), then

even authenticated Byzantine Agreement cannot be used. We conclude that the augmentation of

the standard model with a public-key infrastructure is of no bene�t when parallel or concurrent

composition is needed.

Conceptually, this result demonstrates that achieving security under composition (even a rel-

atively weak type of composition such as two execution parallel self-composition) can be strictly

harder than achieving security in the stand-alone model. It also shows that any protocol that

achieves composition will have to necessarily do so without the help of authenticated Byzantine

Agreement. This conclusion is bothersome because all known protocols for secure multi-party

computation in the case that a third or more of the parties may be corrupted (e.g., [52, 76, 9])

rely extensively on broadcast, and indeed implement it using authenticated Byzantine Agreement.

Thus, none of these protocols compose in the point-to-point model.

1.3.2 Secure Computation Without Agreement

As we have mentioned, an immediate concern that arises out of the previous result relates to the

feasibility of obtaining composition of secure multi-party protocols in a point-to-point network.

This concern motivates the following question: Is it possible to obtain secure multi-party compu-

tation without relying on a broadcast channel (and thus without using authenticated Byzantine

Agreement) when a third or more of the parties are corrupted?

We answer this question in the a�rmative. Speci�cally, we mildly relax the de�nition of secure

computation allowing abort (i.e., when output delivery is not guaranteed), and show how this

de�nition can be achieved without the use of a broadcast channel, and for any number of corrupted

parties. The novelty of our de�nition is in decoupling the issue of agreement from the central

security issues of privacy and correctness in secure computation. The only di�erence between our

de�nition and previous ones is as follows. Previously, it was required that if one honest party

5

In the common reference string model, all parties are given a common, public reference string that is ideally

chosen from a given distribution.
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aborted then all other honest parties also abort. Thus, the parties agree on whether or not the

protocol execution terminated successfully or not. In our new de�nition, it is possible that some

honest parties abort while others receive output. Thus, there is no agreement regarding the success

of the protocol execution. We stress that in all other aspects, our de�nition remains the same (in

particular, the properties of privacy, correctness and independence of inputs are all preserved). An

important corollary of this result is the existence of multi-party protocols that self-compose for the

case that a third or more of the parties may be corrupted.

1.3.3 Universally Composable Multi-Party Computation

The broadest type of composition described above is that of concurrent general-composition. As we

have mentioned, universally composable protocols remain secure under this type of composition.

The feasibility of obtaining universally composable secure multi-party computation is therefore of

great interest. The following results are known regarding universal composability in the standard

model (where no setup phase is assumed). On the one hand, it has been shown that in the case of

an honest majority, universally composable protocols exist for any multi-party functionality [14].

On the other hand, it has also been shown that universally composable protocols for the basic two-

party functionalities of commitment, zero-knowledge and coin-tossing cannot be obtained [16, 14].

These impossibility results can actually be extended to include a very large class of natural func-

tionalities [19]. (We note that two-party computation is a special case of multi-party computation

when there is no honest majority, and thus these results also rule out the possibility of obtaining

universally composable multi-party computation for an honest minority.) Thus, a natural and im-

portant question to ask is whether or not there exists a reasonable model in which it is possible to

obtain general universally composable secure computation for the two-party and honest-minority

multi-party cases?

Universally composable protocols for the speci�c two-party functionalities of commitment and

zero-knowledge have been constructed in the common reference string model [16, 25]. In this model,

all parties are given access to some string that is ideally chosen from a given distribution. The string

must be chosen in a trusted manner, and therefore this setup assumption is de�nitely undesirable.

However, due to the impossibility results of the standard model mentioned above, some setup

assumption is required, and that of a common reference string seems rather minimal. We note that

there are some scenarios where the use of a common reference string is very reasonable. Take for

example the case of a large organization that wishes to have its employees use secure protocols for

a number of di�erent tasks. Then, in this context, the organization itself is trusted to properly

choose a common reference string.

We ask whether or not there exist universally composable protocols for general functionalities

in the common reference string model, in the two-party case, and in the multi-party case when no

honest majority is assumed. We answer this question in the a�rmative and prove the following

feasibility result:

There exist universally composable protocols in the common reference string model for

securely computing any multi-party functionality and that tolerate any number of cor-

rupted parties.

An important corollary of this result is the feasibility of obtaining universally composable two-party

computation for any functionality. We stress that previous feasibility results for secure computation

(in the case of an honest minority) related to the stand-alone model only. Thus, our result is the �rst

general construction to guarantee security under concurrent general-composition, without assuming

an honest majority.
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Remark: Another important feature of our construction relates to the speci�c adversarial model

used. We di�erentiate between two types of adversaries: static and adaptive. A static adversary

controls a set of corrupted parties that is �xed at the onset of the computation (but whose identities

are of course unknown to the honest parties). In contrast, an adaptive adversary actively corrupts

parties throughout the computation. We stress that an adaptive adversary has full power to choose

who to corrupt and when, and can base this choice on its view of the computation so far. We present

universally composable protocols for both the static and adaptive adversarial models. Our protocols

are actually the �rst general constructions to guarantee security against adaptive adversaries in the

case of an honest minority. (All previous protocols for the adaptive adversarial model [15, 6, 24],

even in the stand-alone model, assumed an honest majority.)

1.3.4 An Apparent Contradiction

We conclude with a remark regarding the connection between the results described in Sections 1.3.1

and 1.3.3. On the one hand, in Section 1.3.1 we claim that it is impossible to construct a protocol

for the broadcast functionality (i.e., Byzantine Agreement) that self-composes in parallel, when

1=3 or more of the parties are corrupted. (This impossibility result holds also in the common

reference string model, see Section 2.2.2.) On the other hand, in Section 1.3.3 we claim that for

any functionality (and, in particular, for the broadcast functionality), there exists a protocol in the

common reference string model that remains secure under concurrent general-composition and for

any number of corrupted parties. Thus, it would seem that these claims contradict each other.

However, there is actually no contradiction because the results are in di�erent models. Speci�-

cally, the impossibility result of Section 1.3.1 is demonstrated in a model where guaranteed output

delivery is required (i.e., all honest parties must receive their output and the adversary cannot carry

out a denial of service attack). In contrast, the de�nition of universal composability, similarly to

the de�nitions of Section 1.3.2, does not guarantee output delivery and thus honest parties may

abort (the outline of the de�nition of universal composability in Section 1.2.2 is very brief and

therefore does not include this point). We stress that the proof of the impossibility result for com-

posing (authenticated) Byzantine Agreement relies heavily on the requirement that parties must

receive output; whereas the fact that output delivery is not required is essential for achieving uni-

versal composability in the case of an honest minority. Thus, this di�erence in modeling is actually

central to both of the results. See the formal de�nitions of Byzantine Agreement and universal

composability in Sections 2.2 and 4.3, respectively, for a full description of the model used in each

result.

6

1.4 Organization

Although the results of this thesis are all on the subject of the composition of secure protocols, each

result can be viewed in its own right. Therefore, despite the risk of a small amount of repetition,

each chapter is presented in a self-contained manner, enabling a reader to focus on one chapter

without having to read the others. We also provide an appendix containing abstracts of other work

done by the author during graduate studies at the Weizmann Institute of Science.

6

There is another technical di�erence between the models in that the current formalization of universal compos-

ability assumes that each execution is assigned a unique session identi�er. In such a case, it is actually possible to

achieve authenticated Byzantine Agreement that self-composes concurrently, for any number of corrupted parties; see

Section 2.4. Nevertheless, we believe that the feasibility result for universal composability holds even when unique

session identi�ers are not assumed.



Chapter 2

The Composition of Authenticated

Byzantine Agreement

In this chapter we show that the basic problem of achieving secure broadcast in a distributed

network is strictly harder when composition is required. In particular, assuming a public-key

infrastructure for digital signatures, it is known that secure broadcast can be achieved for any

number of corrupted parties in the stand-alone model. In this chapter, we show that an analogous

result that composes cannot be achieved. That is, when a third or more of the parties may

be corrupted, it is impossible to obtain secure broadcast that remains secure under parallel self-

composition, (even given a public-key infrastructure). Notice that our impossibility result holds

even for the relatively weak notion of parallel self-composition.

2.1 Introduction

The Byzantine Generals (Byzantine Agreement

1

) problem is one of the most researched areas in

distributed computing. Numerous variations of the problem have been considered under di�erent

communication models, and both positive results (i.e., protocols) and negative results (i.e., lower

bounds on e�ciency and fault tolerance) have been established. The reason for this vast interest

is the fact that the Byzantine Generals problem is the algorithmic implementation of a broadcast

channel within a point-to-point network. In addition to its importance as a primitive in its own

right, broadcast is a key tool in the design of secure protocols for multi-party computation.

The problem of Byzantine Generals is (informally) de�ned as follows. The setting is that of n

parties connected via a point-to-point network, where one party is designated as the General (or

dealer) who holds an input message x. In addition, there is an adversary who controls up to t of

the parties and can arbitrarily deviate from the designated protocol speci�cation. The aim of the

protocol is to securely simulate a broadcast channel. Thus, �rst and foremost, all (honest) parties

must receive the same message. Furthermore, if the General is honest, then the message received

by the honest parties must be x (i.e., the adversary is unable to prevent an honest General from

successfully broadcasting its given input message).

Pease et al. [71, 62] provided a solution to the Byzantine Generals problem in the standard

model, i.e. the information-theoretic model with point-to-point communication lines (and no setup

assumptions). For their solution, the number of corrupted parties, t, must be less than n=3.

Furthermore, they complemented this result by showing that the requirement for t < n=3 is in fact

1

These two problems are essentially equivalent.

9
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inherent. That is, no protocol which solves the Byzantine Generals problem in the standard model

can tolerate a third or more corrupted parties.

The above bound on the number of corrupted parties in the standard model is a severe limitation.

It is therefore of great importance to �nd a di�erent (and realistic) model in which it is possible

to achieve higher fault tolerance. One possibility involves augmenting the standard model such

that messages sent can be authenticated. By authentication, we mean the ability to ascertain that

a message was in fact sent by a speci�c party, even when not directly received from that party.

This can be achieved using a trusted preprocessing phase in which a public-key infrastructure for

digital signatures (e.g. [78, 56]) is set up. (We note that this requires that the adversary be

computationally bounded. However, there exist preprocessing phases which do not require any

computational assumptions; see [72].) Indeed, Pease et al. [71, 62] use such an augmentation and

obtain a protocol for the Byzantine Generals problem which can tolerate any number of corrupted

parties (this is very dramatic considering the limitation to 1/3 corrupted in the standard model).

The Byzantine Generals problem in this model is called authenticated Byzantine Generals. We

often informally refer to this model as the \authenticated model".

A common use of Byzantine Generals is to substitute a broadcast channel in multi-party pro-

tocols. As such, it is likely to be executed many times. The question of whether these protocols

remain secure when executed concurrently, in parallel or sequentially is thus an important one.

However, existing work on this problem (in both the standard and authenticated models) focused

on the security and correctness of protocols in the stand-alone model only.

It is not di�cult to show that the unauthenticated protocol of Pease et al. [71], and in fact all

protocols in the standard model, do compose concurrently (and hence in parallel and sequentially).

However, this is not the case with respect to authenticated Byzantine Generals. The �rst to notice

that composition in this model is problematic were Gong et al. [57], who also suggest methods

for overcoming the problem. Our work shows that these suggestions and any others are in fact

futile because composition in this model is impossible (as long as 1/3 or more of the parties may

be corrupted). (We note that by composition, we actually refer to stateless composition; see

Section 2.2.3 for a formal discussion.)

Our Results. The main result of this chapter is a proof that authenticated Byzantine Generals

protocols, both deterministic and randomized, cannot be self-composed in parallel (and thus con-

currently). This is a powerful statement with respect to the value of enhancing the standard model

by the addition of authentication. Indeed, it shows that despite popular belief, this enhancement

does not provide the ability to improve fault tolerance when composition is required. That is, if

there is a need for parallel composition, then the number of corrupted players cannot be n=3 or

more, and hence the authenticated model provides no advantage over the standard model. This

result is summarized in the following theorem:

Theorem 2.1.1 No protocol for authenticated Byzantine Agreement that self-composes in parallel

(even twice) can tolerate n=3 or more corrupted parties.

On the Use of Unique Session Identi�ers. As will be apparent from the proof of Theo-

rem 2.1.1, the obstacle to achieving agreement in this setting is the fact that honest parties cannot

tell in which execution of the protocol a given message was authenticated. This allows the adversary

to \borrow" messages from one execution to another, and by that attack the system. In Section 2.4,

we show that if we further augment the authenticated model so that unique and common indices
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are assigned to each execution, then security under many concurrent executions can be achieved

for any number of corrupted parties.

Thus, on the one hand, our results strengthen the common belief that session identi�ers are

necessary for achieving authenticated Byzantine Generals. On the other hand, we show that such

identi�ers cannot be generated within the system. Typical suggestions for generating session iden-

ti�ers in practice include having the General choose one, or having the parties exchange random

strings and then set the identi�er to be the concatenation of all these strings. However, Theo-

rem 2.1.1 rules out all such solutions. Rather, one must assume the existence of some trusted

external means for coming up with unique and common indices. This seems to be a very di�cult,

if not impossible, assumption to realize.

A natural question to ask here relates to the fact that unique and common session identi�ers

seem to be necessary for carrying out any form of concurrent composition. This is because parties

need to be able to allocate messages to protocol executions, and this requires a way of distinguishing

executions from each other. Indeed, a natural solution to this problem is to provide unique and

global session identi�ers to every execution. However, in such a case, these identi�ers can also be

used for achieving broadcast. Nevertheless, it is possible to correctly allocate messages to protocol

executions without the use of of global identi�ers. This can be achieved as follows. When a party

P

i

begins a new execution, it chooses a unique, local identi�er sid(P

i

) and sends it to all the other

parties. Then, whenever a party P

j

wishes to send a message to P

i

in this execution, it concatenates

the identi�er sid(P

i

) to the message. In this way, P

i

is able to route all messages that it receives to

the correct executions. In general, it is guaranteed that all the honest parties in a given execution

successfully di�erentiate this execution from others.

2

Most importantly, this is achieved without

any global identi�ers whatsoever.

Implications for Secure Multi-Party Computation. As we have stated above, one important

use for Byzantine Generals protocols is to substitute the broadcast channel in a multi-party protocol.

In fact, all known solutions for general multi-party computation assume a broadcast channel. The

implicit claim is that this channel can be substituted by a Byzantine Generals protocol without

any complications. However, our results show that the use of authenticated Byzantine Generals

in such a way prevents the composition of the larger protocol (even if this protocol does compose

when using a physical broadcast channel).

Another important implication of our result is due to the fact that any secure protocol for solving

general multi-party tasks can be used to solve Byzantine Generals (by the standard de�nition of

secure computation for honest majority). Therefore, none of these protocols can be composed in

parallel or concurrently, unless more than 2=3 of the parties are honest or a physical broadcast

channel is available. This issue is dealt with in more depth in Chapter 3.

A Comparison to Zero-Knowledge. It is instructive to compare our results to the work of

Goldreich and Krawzcyk [48] on zero-knowledge. They show that there exist protocols that are zero-

knowledge when executed stand-alone, and yet do not remain zero-knowledge when composed in

parallel (even twice). Thus, they show that zero-knowledge does not necessarily compose in parallel.

Completing this picture, we note that there exist zero-knowledge protocols that do compose in

parallel (for example, see [47, 46]). In contrast, we show that it is impossible to obtain any protocol

for Byzantine Agreement that will compose in parallel (even twice).

2

There are no guarantees regarding messages sent by corrupted parties. However, corrupted parties can anyway

send arbitrary messages, so this makes no di�erence.
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2.2 De�nitions

2.2.1 Computational Model

We consider a setting involving n parties, P

1

; : : : ; P

n

, that interact in a synchronous point-to-point

network. In such a network, each pair of parties is directly connected, and it is assumed that the

adversary cannot modify messages sent between honest parties. Each party is formally modeled

by an interactive Turing machine with n�1 pairs of communication tapes. The communication of

the network proceeds in synchronized rounds, where each round consists of a send phase followed

by a receive phase. In the send phase of each round, the parties write messages onto their output

tapes, and in the receive phase, the parties read the contents of their input tapes.

This paper refers to the authenticated model, where some type of trusted preprocessing phase

is assumed. This is modeled by all parties also having an additional setup-tape that is generated

during the preprocessing phase. Typically, in such a preprocessing phase, a public-key infrastructure

of signature keys is generated. That is, each party receives its own secret signing key, and in

addition, public veri�cation keys associated with all other parties. (This enables parties to use the

signature scheme to authenticate messages that they receive, and is thus the source of the name

\authenticated".) However, we stress that our lower bound holds for all preprocessing phases (even

those that cannot be e�ciently generated).

In this model, a t-adversary is a party that controls up to t < n of the parties P

1

; : : : ; P

n

(these parties are said to be corrupted). The adversary receives the corrupted parties' views and

determines the messages that they send. These messages need not be according to the protocol

execution, but rather can be computed by the adversary as an arbitrary function of its view. In

this work, we consider static adversaries for whom the set of corrupted parties is �xed before the

execution begins. (By taking a weaker adversary, we strengthen our impossibility result.) Finally,

our impossibility results hold for adversaries (and honest parties) whose running time is of any

complexity. In fact, our lower bound holds as long as the adversary is allowed to be of the same

complexity as the honest parties.

2.2.2 Byzantine Generals/Agreement

The existing literature de�nes two related problems: Byzantine Generals and Byzantine Agreement.

In the �rst problem, there is one designated party, the General or dealer, who wishes to broadcast its

value to all the other parties. In the second problem, each party has an input and the parties wish

to agree on a value, with a validity condition that if a majority of honest parties begin with the same

value, then they must terminate with that value. These problems are equivalent in the sense that

any protocol solving one can be used to construct a protocol solving the other, while tolerating the

same number of corrupted parties. We relax the standard requirements on protocols for the above

Byzantine problems in that we allow a protocol to fail with probability that is negligible in some

security parameter. This relaxation is needed for the case of authenticated Byzantine protocols

where signature schemes are used (and can always be forged with some negligible probability). We

present the formal de�nition for the Byzantine Agreement problem only and all references from

here on will be with respect to this problem.

De�nition 2.2.1 (Byzantine Agreement): Let P

1

; : : : ; P

n

be n parties with associated inputs x

1

; : : : ; x

n

and let A be an adversary who controls up to t of the parties. Then, a protocol solves the Byzantine

Agreement problem, tolerating t corruptions, if for any adversary A the following two properties

hold (except with negligible probability):
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1. Agreement: All honest parties output the same value.

2. Validity: If more than n=2 honest parties have the same input value x, then all honest parties

output x.

We note that the validity requirement is sometimes stated so that it must hold only when more

than n=3 honest parties have the same input value.

Authenticated Byzantine Agreement: In the model for authenticated Byzantine Agreement,

some trusted preprocessing phase is run before any executions begin. In this phase, a trusted party

distributes keys to every participating party. Formally,

De�nition 2.2.2 (Authenticated Byzantine Agreement): A protocol for authenticated Byzantine

Agreement is a Byzantine Agreement protocol with the following augmentation:

� Each party has an additional setup-tape.

� Prior to any protocol execution, an ideal (trusted) party chooses a series of strings s

1

; : : : ; s

n

according to some distribution, and sets party P

i

's setup-tape to equal s

i

(for every i = 1; : : : ; n).

Following the above preprocessing stage, the protocol is run in the standard communication model

for Byzantine Generals/Agreement protocols.

As we have mentioned, a natural example of such a preprocessing phase is one where the strings

s

1

; : : : ; s

n

constitute a public-key infrastructure. That is, the trusted party chooses veri�cation and

signing key-pairs (vk

1

; sk

1

); : : : ; (vk

n

; sk

n

) from a secure signature scheme, and sets the contents

of party P

i

's tape to equal s

i

= (vk

1

; : : : ; vk

i�1

; sk

i

; vk

i+1

; : : : ; vk

n

). In other words, all parties are

given their own signing key and the veri�cation keys of all the other parties. We note that this

preprocessing phase can also be used to setup a common reference string to be accessed by all

parties (in this case, all the s

i

's are set to the desired common reference string).

We remark that the above-de�ned preprocessing phase is very strong. First, it is assumed that

it is run completely by a trusted party. Furthermore, there is no computational bound on the power

of the trusted party generating the keys. Nevertheless, our impossibility results hold even for such

a preprocessing phase.

2.2.3 Composition of Protocols

This paper deals with the security of authenticated Byzantine Agreement protocols, when the

protocol is executed many times (rather than just once). We de�ne the composition of protocols

to be stateless. This means that the honest parties act upon their view in a single execution only.

In particular, this means that the honest parties do not store in memory their views from previous

executions or coordinate between di�erent executions occurring at the current time. Furthermore,

in stateless composition, there is no unique session identi�er that is common to all participating

parties. (See the Introduction for a discussion on session identi�ers and their role.) We note

that although the parties are stateless, the adversary is allowed to maliciously coordinate between

executions and record its view from previous executions. Formally, parallel composition is captured

by the following process:

De�nition 2.2.3 (parallel self-composition): Let P

1

; : : : ; P

n

be parties for an authenticated Byzan-

tine Agreement protocol � and let I � [n] (jIj � t) be the set of corrupted parties controlled by an

adversary A. Then, the parallel self-composition of � involves the following process:
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� Run the preprocessing phase associated with � and obtain the strings s

1

; : : : ; s

n

. Then, for every

j, set the setup-tape of P

j

to equal s

j

.

� Repeat the following process a polynomial number of times in parallel:

1. The adversary A chooses an input vector x

1

; : : : ; x

n

.

2. Fix the input tape of every honest P

j

to be x

j

and the random-tape to be a uniformly (and

independently) chosen random string.

3. Invoke all parties for an execution of � (using the strings generated in the preprocessing

phase above). The execution is such that for i 2 I, the messages sent by party P

i

are

determined by A (who also sees P

i

's view). On the other hand, all other parties follow the

instructions as de�ned in �.

Protocol � is said to remain secure under parallel self-composition if each of the parallel executions

constitutes a secure Byzantine Agreement protocol tolerating t corruptions.

We stress that the preprocessing phase is executed only once and all executions use the strings

distributed in this phase. Furthermore, we note that De�nition 2.2.3 implies that all honest parties

are oblivious of the other executions that have taken place (or that are taking place in parallel).

This is implicit in the fact that in each execution the parties are invoked with no additional state

information, beyond the contents of their input, random and setup tapes (i.e., the composition is

stateless). In contrast, the adversary A can coordinate between the executions, and its view at any

given time includes all the messages received in all other executions.

3

Concurrent composition is de�ned analogously, with the only di�erence being that the adver-

sary can determine the scheduling of the executions (i.e., when they begin and at what rate they

proceed). Before continuing, we show that any Byzantine Generals (or Agreement) protocol in the

standard model composes concurrently.

Proposition 2.2.4 Let � be a protocol that solves the Byzantine Agreement problem in the stan-

dard model and tolerates t corruptions. Then, � remains secure under concurrent self-composition.

4

Proof (sketch): We reduce the security of � under concurrent composition to its security for a

single execution. Assume by contradiction that there exists an adversary A who runs N concurrent

executions of �, such that with non-negligible probability, in one of the executions the outputs of

the parties do not meet the requirement on a Byzantine Agreement protocol. Then, we construct

an adversary A

0

who internally incorporates A and attacks a single execution of �. Intuitively, A

0

simulates all executions apart from the one in which A succeeds in its attack. Formally, A

0

begins

by choosing an index i 2

R

f1; : : : ; Ng. Then, for all but the i

th

execution of the protocol, A

0

plays

the roles of the honest parties in an interaction with A (this simulation is internal to A

0

). However,

for the i

th

execution, A

0

externally interacts with the honest parties and passes messages between

them and A. The key point in the proof is that the honest parties hold no secret information (and

do not coordinate between executions). Therefore, the simulation of the concurrent setting by A

0

for A is perfect. Thus, with probability 1=N , the i

th

execution is the one in which A succeeds.

However, this means that A

0

succeeds in breaking the protocol for a single execution (where A

0

's

success probability equals 1=N times the success probability of A). This contradicts the stand-alone

security of �.

3

The analogous de�nition for the composition of unauthenticated Byzantine Agreement is derived from De�ni-

tion 2.2.3 by removing the reference to the preprocessing stage and setup-tapes.

4

It can actually be shown that � remains secure even under concurrent general-composition.



2.3. IMPOSSIBILITY RESULT 15

2.3 Impossibility Result

In this section we show that it is impossible to construct an authenticated Byzantine Agreement

protocol that self-composes in parallel (or concurrently), and is secure when n=3 or more parties

are corrupted. This result is analogous to the [71, 62] lower bounds for Byzantine Agreement in the

standard model (i.e., without authentication). We stress that our result does not merely show that

authenticated Byzantine Agreement protocols do not necessarily compose; rather, we show that

one cannot construct protocols that will compose. Since there exist protocols for unauthenticated

Byzantine Agreement that are resilient for any t < n=3 corrupted parties and compose concur-

rently, this shows that the advantage gained by the preprocessing step in authenticated Byzantine

Agreement protocols is lost when composition is required.

Intuition. Let us �rst provide some intuition into why the added power of the preprocessing step

in authenticated Byzantine Agreement does not help when composition is required. (Recall that on

the one hand in the stand-alone setting, there exist authenticated Byzantine Agreement protocols

that tolerate any number of corrupted parties. On the other hand, under parallel composition, only

t < n=3 corruptions can be tolerated.) An instructive step is to �rst see how authenticated Byzan-

tine Agreement protocols typically utilize a public-key infrastructure (set up in the preprocessing

step) in order to increase fault tolerance. Consider three parties A, B and C participating in a

standard (unauthenticated) Byzantine Agreement protocol. Furthermore, assume that during the

execution A claims to B that C sent it some message x. Then, B cannot di�erentiate between the

case that C actually sent x to A, and the case that C did not send this value and A is corrupted.

Thus, B cannot be sure that A really received x from C. Indeed, such a model has been called

the \oral message" model, in contrast to the \signed message" model of authenticated Byzantine

Agreement [62]. The use of signature schemes helps to overcome this exact problem: If C had

signed on the message x and sent this signature to A, then A could forward the signature to B.

Since A cannot forge C's signature, this would then constitute a proof that C had indeed sent x

to A. Utilizing the unforgeability property of signatures, it is thus possible to achieve Byzantine

Agreement for any number of corrupted parties.

However, the above intuition holds only in a setting where a single execution of the agreement

protocol takes place. Speci�cally, if a number of executions were to take place, then A may send B

a value x along with C's signature on x, yet B would still not know whether C signed on x in this

execution, or in a di�erent (concurrent or parallel) execution. Thus, the mere fact that A produces

C's signature on a value does not provide proof that C signed this value in this execution. As we

will see in the proof, this is enough to render the public-key infrastructure useless under parallel

composition.

Theorem 2.3.1 (Theorem 2.1.1 { restated): No protocol for authenticated Byzantine Agreement

that self-composes in parallel (even twice) can tolerate n=3 or more corrupted parties.

Proof: Our proof of Theorem 2.1.1 uses ideas from the proof by Fischer et al. [38] that no

unauthenticated Byzantine Agreement protocol can tolerate n=3 or more corrupted parties. We

begin by proving the following lemma:

Lemma 2.3.2 There exists no protocol for authenticated Byzantine Agreement for three parties,

that composes in parallel (even twice) and can tolerate one corrupted party.

Proof: Assume, by contradiction, that there exists a protocol � that solves the Byzantine Agree-

ment problem for three parties A, B and C, where one may be corrupt. Furthermore, � remains
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secure even when composed in parallel twice. Exactly as in the proof of Fischer et al. [38], we de�ne

a hexagonal system S that intertwines two independent copies of �. That is, let A

0

; B

0

, C

0

and A

1

,

B

1

and C

1

be independent copies of the three parties participating in �. By independent copies,

we mean that A

0

and A

1

are the same party A with the same key tape, that runs in two di�erent

parallel executions of �, as de�ned in De�nition 2.2.3. The system S is de�ned by connecting party

A

0

to C

1

and B

0

(rather than to C

0

and B

0

); party B

0

to A

0

and C

0

; party C

0

to B

0

and A

1

; and

so on, as in Figure 2.1.

A

B C

0 0

0

1

1

Π
S

1

A

C

BA

C

B

1

1

0

00

1

Figure 2.1: Combining two copies of � in a hexagonal system S.

In the system S, parties A

0

, B

0

, and C

0

have input 0; while parties A

1

, B

1

and C

1

have input 1.

Note that within S, all parties follow the instructions of � exactly. We stress that S is not a

Byzantine Agreement setting (where the parties are joined in a complete graph on three nodes),

and therefore the de�nitions of Byzantine Agreement tell us nothing directly of what the parties'

outputs should be. However, S is a well-de�ned system and this implies that the parties have

well-de�ned output distributions. The proof proceeds by showing that if � is a correct Byzantine

Agreement protocol, then we arrive at a contradiction regarding the output distribution in S. We

begin by showing that B

0

and C

0

output 0 in S. We denote by rounds(�) the upper bound on the

number of rounds of � (when run in a Byzantine Agreement setting).

Claim 2.3.3 Except with negligible probability, parties B

0

and C

0

halt within rounds(�) steps and

output 0 in the system S.

Proof: We prove this claim by showing that there exists an adversary A controlling A

1

and A

2

who participates in two parallel copies of � and simulates the system S, with respect to B

0

and

C

0

's view. (We stress that A controlling A

1

and A

2

is considered one corruption because these are

both copies of the same party.) The adversary A (and the other honest parties participating in

the parallel executions) work within a Byzantine Agreement setting where there are well-de�ned

requirements on their output distribution. Therefore, by analyzing their output in this parallel

execution setting, we are able to make claims regarding their output in the system S.

Let A

0

, B

0

and C

0

be parties running an execution of �, denoted �

0

, where B

0

and C

0

both

have input 0. Furthermore, let A

1

, B

1

and C

1

be running a parallel execution of �, denoted �

1

,

where B

1

and C

1

both have input 1. Recall that B

0

and B

1

are independent copies of the party B

with the same key tape (as in De�nition 2.2.3); likewise for C

0

and C

1

.
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Now, let A be an adversary who controls both A

0

in �

0

and A

1

in �

1

(recall that the corrupted

party can coordinate between the di�erent executions). Party A's strategy is to maliciously generate

an execution in which B

0

's and C

0

's view in �

0

is identical to their view in S. A achieves this

by redirecting edges of the two parallel triangles (representing the parallel execution), so that the

overall system has the same behavior as S; see Figure 2.2.

C

A

1

C

B

0

0

0

1

1

1

1

A

C

B

0 0

0

A

1

B

S

A

B

C

0

Π

1 1

0

1

1

0

0

1

0

0

1

0

1

Π

Figure 2.2: Redirecting edges of �

0

and �

1

to make a hexagon.

Speci�cally, the (A

0

; C

0

) and (A

1

; C

1

) edges of �

0

and �

1

respectively are removed, and the (A

0

; C

1

)

and (A

1

; C

0

) edges of S are added in their place. A is able to make such a modi�cation because it

only involves redirecting messages to and from parties that it controls (i.e., A

0

and A

1

).

Before proceeding, we present the following notation: let msg

i

(A

0

; B

0

) denote the message sent

from A

0

to B

0

in the i

th

round of the protocol execution. We now formally show how the adversary

A works. A invokes parties A

0

and A

1

, upon inputs 0 and 1 respectively. We stress that A

0

and

A

1

follow the instructions of protocol � exactly. However, A provides them with their incoming

messages and sends their outgoing messages for them. The only malicious behavior of A is in the

redirection of messages to and from A

0

and A

1

. A full description of A's code is as follows (we

recommend the reader to refer to Figure 2.2 in order to clarify the following):

1. Send outgoing messages of round i: A obtains messages msg

i

(A

0

; B

0

) and msg

i

(A

0

; C

0

) from

A

0

in �

0

, and messages msg

i

(A

1

; B

1

) and msg

i

(A

1

; C

1

) from A

1

in �

1

(these are the round i

messages sent by A

0

and A

1

to the other parties; as we have mentioned, A

0

and A

1

compute

these messages according to the protocol de�nition and based on their view).

� In �

0

, A sends B

0

the message msg

i

(A

0

; B

0

) and sends C

0

the message msg

i

(A

1

; C

1

) (and

thus the (A

1

; C

1

) directed edge is replaced by the directed edge (A

1

; C

0

)).

� In �

1

, A sends B

1

the message msg

i

(A

1

; B

1

) and sends C

1

the message msg

i

(A

0

; C

0

) (and

thus the (A

0

; C

0

) directed edge is replaced by the directed edge (A

0

; C

1

)).

2. Obtain incoming messages from round i: A receives messages msg

i

(B

0

; A

0

) and msg

i

(C

0

; A

0

)

from B

0

and C

0

in round i of �

0

, and messages msg

i

(B

1

; A

1

) and msg

i

(C

1

; A

1

) from B

1

and

C

1

in round i of �

1

.

� A passes A

0

in �

0

the messages msg

i

(B

0

; A

0

) and msg

i

(C

1

; A

1

) (and thus the (C

1

; A

1

)

directed edge is replaced by the directed edge (C

1

; A

0

)).

� A passes A

1

in �

1

the messages msg

i

(B

1

; A

1

) and msg

i

(C

0

; A

0

) (and thus the (C

0

; A

0

)

directed edge is replaced by the directed edge (C

0

; A

1

)).
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We now claim that B

0

and C

0

's view in �

0

is identical to B

0

and C

0

's view in S.

5

This holds

because in the parallel execution of �

0

and �

1

, all parties follow the protocol de�nition (including

A

0

and A

1

). The same is true in the system S, except that party A

0

is connected to B

0

and

C

1

instead of to B

0

and C

0

. Likewise, A

1

is connected to B

1

and C

0

instead of to B

1

and C

1

.

Furthermore, by the de�nition of A, the messages seen by all parties in the parallel execution of

�

0

and �

1

are exactly the same as the messages seen by the parties in S (e.g., the messages seen

by C

0

in �

0

are those sent by B

0

and A

1

, exactly as in S). Therefore, the views of B

0

and C

0

in

the parallel execution maliciously controlled by A, are identical to their views in S.

6

By the assumption that � is a correct Byzantine Agreement protocol that composes twice in

parallel, we have that in �

0

both B

0

and C

0

halt within rounds(�) steps and output 0 (except with

negligible probability). The fact that they both output 0 is derived from the fact that B

0

and C

0

are an honest majority with the same input value 0. Therefore, they must output 0 in the face

of any adversarial A

0

; in particular this holds with respect to the speci�c adversary A described

above. Since the views of B

0

and C

0

in S are identical to their views in �

0

, we conclude that in the

system S they also halt within rounds(�) steps and output 0 (except with negligible probability).

This completes the proof of the claim.

Using analogous arguments, we obtain the following two claims:

Claim 2.3.4 Except with negligible probability, parties A

1

and B

1

halt within rounds(�) steps and

output 1 in the system S.

In order to prove this claim, the adversary is C who controls C

1

and C

2

and works in a similar

way to A in the proof of Claim 2.3.3 above. (The only di�erence is regarding the edges that are

redirected.)

Claim 2.3.5 Except with negligible probability, parties A

1

and C

0

halt within rounds(�) steps and

output the same value in the system S.

Similarly, this claim is proven by de�ning an adversary B who controls B

1

and B

2

and follows a

similar strategy to A in the proof of Claim 2.3.3 above.

Combining Claims 2.3.3, 2.3.4 and 2.3.5 we obtain a contradiction. This is because, on the one

hand C

0

must output 0 in S (Claim 2.3.3), and A

1

must output 1 in S (Claim 2.3.4). On the other

hand, by Claim 2.3.5, parties A

1

and C

0

must output the same value. We conclude that there does

not exist a 3-party protocol for Byzantine Agreement that tolerates one corruption and composes

twice in parallel. This concludes the proof of the lemma.

Theorem 2.1.1 is derived from Lemma 2.3.2 in the standard way [71, 62] by showing that if there

exists a protocol that is correct for any n � 3 and n=3 corrupted parties, then one can construct a

protocol for 3 parties that can tolerate one corrupted party. This is in contradiction to Lemma 2.3.2,

and thus Theorem 2.1.1 is implied.

The following corollary, referring to concurrent composition, is immediately derived from the fact

that parallel composition (where the scheduling of the messages is �xed and synchronized) is merely

a special case of concurrent composition (where the adversary controls the scheduling).

5

In fact, the views of all the parties in the parallel execution with A are identical to their views in the system S.

However, in order to obtain Claim 2.3.3, we need only analyze the views of B

0

and C

0

.

6

We note the crucial di�erence between this proof and that of Fischer et al. [38]. In [38], the corrupted party A is

able to simulate the entire A

0

{C

1

{B

1

{A

1

segment of the hexagon system S by itself. Thus, in a single execution of

� with B

0

and C

0

, party A can simulate the hexagon. Here, due to the fact that the parties B

1

and C

1

have secret

information that A does not have access to, A is unable to simulate their behavior itself. Rather, A needs to redirect

messages from the parallel execution of �

1

in order to complete the hexagon.
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Corollary 2.3.6 No protocol for authenticated Byzantine Agreement that self-composes concur-

rently (even twice) can tolerate n=3 or more corrupted parties.

Sequential composition. The above results relate to the feasibility of parallel and concurrent

composition. However, sequential composition is also an important concern. We note that lower

bounds also hold for deterministic protocols. In particular, a deterministic protocol for Byzantine

Agreement that runs for r rounds and tolerates t � n=3 corrupted parties, can be composed

sequentially at most 2r�1 times. On the other hand, randomized protocols can be used to overcome

this lower bound. We refer the interested reader to [66] for further details.

2.4 Authenticated Byzantine Agreement using Unique Identi�ers

In this section we consider an augmentation to the authenticated model in which each execution is

assigned a unique and common identi�er. We show that in such a model, it is possible to achieve

Byzantine Agreement that composes concurrently, for any number of corrupted parties. We stress

that in the authenticated model itself, it is not possible for the parties to agree on unique and

common identi�ers, without some external help. This is because by the results of this section,

agreeing on a common identi�er amounts to solving the Byzantine Agreement problem, and we

have proven that this cannot be achieved for t � n=3 when composition is required. Therefore,

these identi�ers must come from outside the system (and as such, assuming their existence is an

augmentation to the authenticated model).

Intuitively, the existence of unique identi�ers helps in the authenticated model for the following

reason. Recall that our lower bound is based on the ability of the adversary to borrow signed mes-

sages from one execution to another. Now, if each signature also includes the session identi�er, then

the honest parties can easily distinguish between messages signed in this execution and messages

signed in a di�erent execution. It turns out that this is enough. That is, we give a transformation

from stand-alone Byzantine Agreement protocols based on signature schemes, to protocols that

compose concurrently when unique identi�ers exist. Our transformation holds for protocols that

utilize the signature scheme in a natural way (as will be seen below).

The Transformation: Let � be a protocol for authenticated Byzantine Agreement that uses a

secure signature scheme. We de�ne a modi�ed protocol �(id) that works as follows:

� Each party is given the identi�er id as auxiliary input.

� If a party P

i

has an instruction in � to sign a given message m with its signing key sk

i

, then P

i

signs upon id �m instead (where � denotes concatenation).

� If a party P

i

has an instruction in � to verify a given signature � on a message m with a

veri�cation key vk

j

, then P

i

veri�es that � is a valid signature for the message id �m.

Secure signature schemes. Before proceeding, we present an informal de�nition of secure sig-

nature schemes. A signature scheme is a triplet of algorithms (G;S; V ), where G is a probabilistic

generator that outputs a pair of signing and veri�cation keys (sk; vk), S is a signing algorithm and

V is a veri�cation algorithm. The validity requirement for signature scheme states that for every

message m, V (vk;m; S(sk;m)) = 1, where (vk; sk)  G(1

n

) (i.e., honestly generated signatures

are always accepted). The validity can be relaxed so that it holds with overwhelming probability,

where the probability is taken over the random coin tosses of the di�erent algorithms.
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The security requirement of a signature scheme states that the probability that an e�cient

forging algorithm S

�

succeeds in generating any forgery, even when given oracle access to the

signing oracle, is negligible. Of course, a successful forgery is only with respect to a message for

which S

�

did not receive a signature from its oracle. More formally, the following experiment is

de�ned: The generator G is run, outputting a key-pair (vk; sk). Then, S

�

is given vk and oracle

access to the signing oracle S(sk; �). At the conclusion of the experiment, S

�

outputs a pair (m

�

; �

�

).

Let Q

m

be the set of oracle queries by S

�

. Then, we say that S

�

succeeds if V (vk;m

�

; �

�

) = 1 and

m

�

62 Q

m

. (That is, S

�

output a message along with a valid signature, and S

�

did not query its

oracle with this message.) A signature scheme is existentially secure against chosen-message attacks

if for every probabilistic polynomial-time S

�

, the probability that S

�

succeeds is negligible.

Modifying the de�nition. For our purposes here, we consider a modi�cation of the above

de�nition where we somewhat restrict the forging algorithm S

�

. That is, let id be any string.

Then, the modi�cation is such that S

�

is given access to a restricted signing algorithm S

:id

(sk; �)

that signs on any message m that does not have pre�x id. Furthermore, S

�

must output a pair

(m

�

; �

�

) where the pre�x of m

�

equals id. As before, S

�

is said to succeed if V (vk;m

�

; �

�

) = 1

and m

�

62 Q

m

. It is not hard to see that any signature scheme that is existentially secure against

chosen-message attacks is also secure with this modi�cation. This is because a successful forgery

here contains a message m

�

with pre�x id. Since S

�

only has access to S

:id

(sk; �), it cannot have

queried its oracle with m

�

. Thus, a regular forging algorithm can also use S

�

to generate a forgery.

It is also not hard to see that protocols that use a signature scheme in a natural way, remain

secure when the modi�ed de�nition is used and the appropriate id is required on all messages

that are veri�ed (as in our transformation of Byzantine Agreement protocols). This is because the

infeasibility of forging messages containing id is preserved and this is the only property of signature

schemes usually utilized. We are now ready to state the theorem:

Theorem 2.4.1 Let � be a secure protocol for authenticated Byzantine Agreement which uses a

public-key infrastructure for a signature scheme that is existentially secure against chosen message

attacks. Furthermore, the parties use their secret keys for signing on messages only. Let �(id)

be obtained from � as in the above transformation, and let id

1

; : : : ; id

`

be a series of ` unique

strings. If the stand-alone protocol �(id) remains secure even when the adversary is given access

to restricted signing oracles S

:id

(sk; �) for the secret keys of all the honest parties, then the protocols

�(id

1

); : : : ;�(id

`

) all solve the Byzantine Agreement problem, even when run concurrently.

Proof: Intuitively, the security of the protocols �(id

1

); : : : ;�(id

`

) is due to the fact that signatures

from �(id

i

) cannot be of any help to the adversary in �(id

j

). This is because in �(id

j

), the honest

parties ignore any signature that includes an identi�er that is not id

j

. Since id

i

6= id

j

, we have

that signatures sent in �(id

i

) are useless in �(id

j

). Our formal proof of this intuition proceeds by

showing how an adversary for a single execution of �(id) can internally simulate the concurrent

executions of �(id

1

); : : : ;�(id

`

), thereby reducing the security of the concurrent setting to the

stand-alone setting.

Let A be an adversary who attacks the concurrent executions �(id

1

); : : : ;�(id

`

). By contra-

diction, assume that A succeeds in \breaking" one of the �(id

i

) executions with non-negligible

probability. We construct an adversary A

0

who internally incorporates A and attacks a single ex-

ecution of �(id) as follows. Intuitively, A

0

simulates all executions apart from the one in which

A succeeds in its attack. Formally, A

0

�rst randomly selects an execution i 2

R

f1; : : : ; `g. Then,

A

0

sets id

i

= id and chooses unique identi�ers id

j

(for every j 6= i). Next, A

0

invokes A and

emulates the concurrent executions of �(id

1

); : : : ;�(id

`

) for A. Adversary A

0

does this by playing
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the roles of the honest parties in all but the i

th

execution �(id

i

). In contrast, in �(id

i

) adversary

A

0

externally interacts with the honest parties and passes messages between them and A. Since A

0

is given access to the restricted signing oracles of all the honest parties and the honest parties use

their signing keys to generate signatures only, A

0

is able to generate the honest parties' messages

in all the executions �(id

j

) for j 6= i. (Recall that in these executions, the pre�x of every signed

message is id

j

6= id

i

and thus the restricted oracle su�ces.) Therefore, the emulation by A

0

of

the concurrent executions for A is perfect. This implies that A

0

succeeds in \breaking" �(id) with

success probability that equals 1=` times A's success probability in the concurrent setting. Thus,

A

0

succeeds with non-negligible probability and this contradicts the assumed stand-alone security

of �(id) even when A

0

is given access to the restricted oracles.

It is easy to verify that the protocols of [71, 62, 34] for authenticated Byzantine Agreement all ful�ll

the requirements in the assumption of Theorem 2.4.1. We therefore obtain the following corollary:

Corollary 2.4.2 There exist protocols for authenticated Byzantine Agreement that tolerate any

t < n corruptions and remain secure under concurrent executions, assuming that global unique

identi�ers are allocated to each execution.

We conclude by noting that it is not at all clear how the augmentation to the authenticated model

of unique identi�ers can be achieved in practice. In particular, requiring the on-line participation of

a trusted party who assigns identi�ers to every execution is clearly impractical. (Furthermore, such

a party could just be used to directly implement broadcast.) However, we do note one important

scenario where Theorem 2.4.1 can be applied. As we have mentioned, secure protocols often use

many invocations of a broadcast primitive. Furthermore, in order to improve round e�ciency, in any

given round many broadcasts may be simultaneously executed. The key point here is that within

the secure protocol, unique identi�ers can be allocated to each broadcast by the protocol designer.

Therefore, authenticated Byzantine Agreement can be used. Of course, this does not change the

fact that the secure protocol itself will not compose in parallel or concurrently. However, it does

mean that its security is guaranteed in the stand-alone setting, and a physical broadcast channel

is not necessary.
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Chapter 3

Secure Computation Without

Agreement

In the previous chapter, we have shown that authenticated Byzantine Agreement protocols cannot

be composed concurrently (or even in parallel) when a third or more of the parties are corrupted.

An immediate and important rami�cation of this result relates to the self-composition of secure

multi-party computation. All known protocols for general secure multi-party computation strongly

rely on the extensive use of a broadcast primitive. When a third or more of the parties are corrupted,

this broadcast is implemented using authenticated Byzantine Agreement. Essentially, this use of

Byzantine Agreement cannot be eliminated since the standard de�nition of secure computation

(for the case that less than 1=2 of the parties are corrupted) actually implies Byzantine Agreement.

Moreover, it is accepted folklore that the use of a broadcast channel is essential for achieving secure

multiparty computation, in the case that 1=3 or more of the parties are corrupted. Due to the

above state of a�airs, there are currently no known composable protocols for secure multi-party

computation in the point-to-point network model.

In this chapter we show that secure computation can be achieved without a broadcast channel,

and thus without authenticated Byzantine Agreement. Speci�cally, we present a new de�nition of

secure computation that only mildly relaxes previous de�nitions and that can be achieved without

using a broadcast channel. The new de�nition separates the issue of agreement from the central

security issues of privacy and correctness in secure computation. As a result the lower bounds of

Byzantine Agreement no longer apply to secure computation. Indeed, we prove that secure multi-

party computation can be achieved for any number of corrupted parties and without a broadcast

channel (or trusted preprocessing phase as required for running authenticated Byzantine Agree-

ment). An important corollary of the results in this chapter is the ability to obtain multi-party

protocols in a point-to-point network that self-compose.

3.1 Introduction

3.1.1 Background

Security in multi-party computation. A secure multi-party protocol should protect honest

parties from the malicious behavior of corrupted parties. In particular, malicious parties should

not be able to learn anything more than their prescribed output (privacy) and the outputs of

the computation should be as presribed (correctness). The security of multi-party computation

[53, 4, 69, 13] is formalized in the following way. Consider an ideal world in which an external

23
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trusted party is willing to help the parties carry out their computation. An ideal computation

takes place in the ideal world by having the parties simply send their inputs to the trusted party.

This trusted party then computes the desired function and passes each party its prescribed output.

A real protocol that is run by the parties (in a world where no trusted party exists) is said to

be secure, if no adversary controlling a coalition of corrupted parties can do more harm in a real

execution that in the above ideal computation. More formally, security is said to hold if a real

execution can be emulated within the ideal model.

Notice that in an ideal computation, the above-mentioned properties of privacy and correctness

are trivially guaranteed. Additional important properties that are implied are independence of

inputs (meaning that corrupted parties must choose their inputs independently of the honest par-

ties), guaranteed output delivery (meaning that all parties receive output and the adversary cannot

conduct a denial of service attack), and fairness (meaning that corrupted parties receive output if

and only if honest parties do). Since these properties all hold in the ideal model, and since real

executions of secure protocols can be emulated in the ideal model, it follows that these properties

also all hold in a real execution of a secure protocol. We remark that guaranteeing output delivery

and fairness is actually impossible unless a strict majority of the parties are honest. Therefore,

when this is not the case (i.e., when t � n=2), the ideal model is modi�ed so that these properties

are not implied. Speci�cally, under certain conditions, parties are allowed to abort (in which case

they output a special symbol ? rather than their speci�ed output). In addition, fairness takes on

di�erent meanings for di�erent values of t. We will single out a few forms of fairness. On the one

extreme, we have \complete fairness" that guarantees that if a corrupt party gets its output then

all honest parties also get their output. (As we have mentioned, this is only possible when t < n=2.)

On the other extreme, we have \no fairness" in which the adversary always gets its output and

has the power to decide whether or not the honest parties also get output. An intermediate notion

that we call \partial fairness" singles out a speci�ed party such that if this speci�ed party is honest

then complete fairness is achieved. On the other hand, if the speci�ed party is corrupt, then no

fairness is achieved. Thus, fairness is partial.

Byzantine agreement and secure multi-party computation. There is a close connection

between Byzantine agreement and secure multi-party computation. First, Byzantine agreement (or

broadcast) is used as a basic and central tool in the construction of secure protocols. In particular,

all known protocols for general multi-party computation use a broadcast channel (and implement it

using Byzantine agreement or authenticated Byzantine agreement). Second, Byzantine agreement

is actually a special case of secure computation (this holds by the standard de�nition taken for the

case that t < n=2 where output delivery is guaranteed). Therefore, all the lower bounds relating

to Byzantine agreement immediately apply to secure multi-party computation. In particular, the

Byzantine agreement problem cannot be solved for any t � n=3 [71]. Thus, it is also impossible to

achieve secure computation with guaranteed output delivery in a point-to-point network for t � n=3.

On the other hand, for t < n=2 it is possible to obtain secure computation with guaranteed output

delivery assuming a broadcast channel. This means that in order to achieve such secure computation

for the range of n=3 � t < n=2, either a physical broadcast channel or a trusted pre-processing

phase for running authenticated Byzantine agreement must be assumed.

In the previous chapter, it was shown that authenticated Byzantine agreement cannot be com-

posed (concurrently or even in parallel), unless t < n=3. This has the following rami�cations.

On the one hand, in the range of n=3 � t < n=2, it is impossible to obtain secure computa-

tion that composes without using a physical broadcast channel. This is because such a protocol

in the point-to-point network model and with trusted pre-processing would imply authenticated
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Byzantine agreement that composes. On the other hand, as we have mentioned, in the range of

t � n=2 the de�nitions of secure computation do not imply Byzantine agreement. Nevertheless, all

protocols for secure computation in this range make extensive use of a broadcast primitive. The

impossibility of composing authenticated Byzantine agreement puts this whole body of work into

question when composition is required. Speci�cally without using a physical broadcast channel,

none of these protocols compose (even in parallel). In summary, there are no known protocols for

secure computation in a point-to-point network that compose in parallel or concurrently, for any

t � n=3. Needless to say, the requirement of a physical broadcast channel is very undesirable (and

often unrealistic).

3.1.2 Our Results

We present a mild relaxation of the standard de�nition of secure multi-party computation that

decouples the issue of agreement from the issue of secure multi-party computation. In particular,

our de�nition focuses on the central issues of privacy and correctness. Loosely speaking, our

de�nition is di�erent in the following way. As we have mentioned, for the case of t � n=2, it is

impossible to guarantee output delivery and therefore some parties may conclude with a special

abort symbol ?, and not with their output. Previously [44], it was required that either all honest

parties receive their outputs or all honest parties output ?.

1

Thus the parties all agree on whether

or not output was received. On the other hand, in our de�nition some honest parties may receive

output while some receive ?, and the requirement of agreement is removed. We stress that this is

the only di�erence between our de�nition and the previous ones.

We show that it is possible to achieve secure computation according to the new de�nition for

any t < n and without a broadcast channel or setup assumption (assuming the same computational

assumptions made, if any, by corresponding protocols that did use broadcast channels.) Thus, the

lower bounds for Byzantine agreement indeed do not imply lower bounds for secure multi-party

computation. We note that our result holds in both the information theoretic and the computational

models.

A hierarchy of de�nitions. In order to describe our results in more detail, we present a hier-

archy of de�nitions for secure computation. All the de�nition ful�ll the properties of privacy and

correctness. The hierarchy that we present here relates to the issues of abort (or failure to receive

output) and fairness.

1. Secure computation without abort: According to this de�nition, all parties are guaranteed to

receive their output. (This is what we previously called \guaranteed output delivery".) This

is the standard de�nition for the case of honest majority (i.e., t < n=2). Since all honest

parties receive output, complete fairness is always obtained here.

2. Secure computation with unanimous abort: In this de�nition, it is ensured that either all hon-

est parties receive their outputs or all honest parties abort. This de�nition can be considered

with di�erent levels of fairness:

(a) Complete fairness: Recall that when complete fairness is achieved, the honest parties

are guaranteed to receive output if the adversary does. Thus, here one of two cases

can occur. Either all parties receive output or all parties abort. Thus, the adversary

1

We note that in private communication, Goldreich stated that the requirement in [44] of having all parties abort

or all parties receive output was only made in order to simplify the de�nition.
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can conduct a denial of service attack, but nothing else. (This de�nition can only be

achieved in the case of t < n=2.)

(b) Partial fairness: As in the case of complete fairness, the adversary may disrupt the

computation and cause the honest parties to abort without receiving their prescribed

output. However, unlike above, the adversary may receive the corrupted parties' outputs,

even if the honest parties abort (and thus the abort is not always fair). In particular, the

protocol speci�es a single party such that the following holds. If this party is honest, then

complete fairness is essentially achieved (i.e., either all parties abort or all parties receive

correct output). On the other hand, if the speci�ed party is corrupt, then fairness may

be violated. That is, the adversary receives the corrupted parties' outputs �rst, and then

decides whether or not the honest parties all receive their correct output or all receive

abort (and thus the adversary may receive output while the honest parties do not).

Although fairness is only guaranteed in the case that the speci�ed party is not corrupted,

there are applications where this feature may be of importance. For example, in a sce-

nario where one of the parties may be \more trusted" than others (yet not too trusted),

it may be of advantage to make this party the speci�ed party. Another setting where

this can be of advantage is one where all the participating parties are trusted. However,

the problem that may arise is that of an external party \hacking" into the machine of

one of the parties. In such a case, it may be possible to provide additional protection to

the speci�ed party.

(c) No fairness: This is the same as in the case of partial fairness except that the adversary

always receives the corrupted parties' outputs �rst (i.e., there is no speci�ed party).

We stress that in all the above three de�nitions, if one honest party aborts then so do all honest

parties, and thus all are aware of the fact that the protocol did not successfully terminate.

This feature of having all parties succeed or fail together may be an important one in some

applications.

3. Secure computation with abort: The only di�erence between this de�nition and the one imme-

diately preceding it, is that some honest parties may receive output while others abort. That

is, the requirement of unanimity with respect to abort is removed. This yields two di�erent

de�nitions, depending on whether partial fairness or no fairness is taken. (Complete fairness

is not considered here because it only makes sense in a setting where all the parties, including

the corrupted parties, either all receive output or all abort. Therefore, it is not relevant in

the setting of secure computation with non-unanimous abort.)

Using the above terminology, the de�nition proposed by Goldreich [44] for the case of any t < n is

that of secure computation with unanimous abort and partial fairness. Our new de�nition is that

of secure computation with abort, and as we have mentioned, its key feature is a decoupling of the

issues of secure computation and agreement (or unanimity).

Achieving secure computation with abort. Using the terminology introduced above, our

results show that secure computation with abort and partial fairness can be achieved for any t < n,

and without a broadcast channel or a trusted pre-processing phase. We achieve this result in the

following way. First, we de�ne a weak variant of the Byzantine Generals problem, called broadcast

with abort, in which not all parties are guaranteed to receive the broadcasted value. In particular,

there exists a single value x such that every party either outputs x or aborts. Furthermore, when

the broadcasting party is honest, the value x equals its input, similarly to the validity condition of
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Byzantine Generals. (Notice that in this variant, the parties do not necessarily agree on the output

since some may output x while others abort.) We call this \broadcast with abort" because as

with secure computation with abort, some parties may output x while other honest parties abort.

We show how to achieve this type of broadcast with a simple deterministic protocol that runs in

2 rounds. Secure multi-party computation is then achieved by replacing the broadcast channel

in known protocols with a broadcast with abort protocol. Despite the weak nature of agreement

in this broadcast protocol, it is nevertheless enough for achieving secure multi-party computation

with abort. Since our broadcast with abort protocol runs in only 2 rounds, we also obtain a very

e�cient transformation of protocols that work with a broadcast channel into protocols that require

only a point-to-point network. In summary, we obtain the following theorem:

Theorem 3.1.1 (e�cient transformation): There exists an e�cient protocol compiler that receives

any protocol � for the broadcast model and outputs a protocol �

0

for the point-to-point model such

that the following holds: If � securely computes a functionality f with unanimous abort and with

any level of fairness, then �

0

securely computes f with abort and with no fairness. Furthermore,

if � tolerates up to t corruptions and runs for R rounds, then �

0

tolerates up to t corruptions and

runs for O(R) rounds.

Notice that in the transformation of Theorem 3.1.1, protocol �

0

does not achieve complete fairness

or partial fairness, even if � did. Thus, fairness may be lost in the transformation. Nevertheless,

meaningful secure computation is still obtained and at virtually no additional cost.

When obtaining some level of fairness is important, Theorem 3.1.1 does not provide a solution.

We show that partial fairness can be obtained without a broadcast channel for the range of t � n=2

(recall that complete fairness cannot be obtained in this range, even with broadcast). That is, we

prove the following theorem:

Theorem 3.1.2 (partial fairness): For any probabilistic polynomial-time n-party functionality f ,

there exists a protocol in the point-to-point model for computing f that is secure with abort, partially

fair and tolerates any t < n corruptions.

The theorem is proved by �rst showing that fairness can be boosted in the point-to-point model.

That is, given a generic protocol for secure multi-party computation that achieves no fairness, one

can construct a generic protocol for secure multi-party computation that achieves partial fairness.

(Loosely speaking, a generic protocol is one that can be used to securely compute any e�cient func-

tionality.) Applying Theorem 3.1.1 to known protocols for the broadcast model, we obtain secure

multi-party computation that achieves no fairness. Then, using the above \fairness boosting", we

obtain Theorem 3.1.2. We note that the round complexity of the resulting protocol is of the same

order of the \best" generic protocol that works in the broadcast model. In particular, based on

the protocol of Beaver et al. [9], we obtain the �rst constant-round protocol in the point-to-point

network for the range of n=3 � t < n=2.

2

That is:

Corollary 3.1.3 (constant round protocols without broadcast for t < n=2): Assume that there

exist public-key encryption schemes (or, alternatively, assume the existence of one-way functions

and a model with private channels). Then, for every probabilistic polynomial-time functionality f ,

there exists a constant round protocol in the point-to-point network for computing f that is secure

with abort, partially fair and tolerates t < n=2 corruptions.

2

For the range of t < n=3, the broadcast channel in the protocol of [9] can be replaced by the expected constant-

round Byzantine agreement protocol of Feldman and Micali [37]. However, there is no known authenticated Byzantine

agreement protocol with analogous round complexity.
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Composition of secure multi-party protocols. An important corollary of our new de�nition

is the ability to obtain secure multi-party protocols for t > n=3 that self-compose in parallel or

concurrently, without a broadcast channel. Since our protocols do not use a broadcast channel (or

authenticated Byzantine agreement), the lower bound of Chapter 2 does not apply. Speci�cally, if a

protocol composes when using a broadcast channel, then the transformed protocol in the point-to-

point network also composes. This is in contrast to all previous protocols that used authenticated

Byzantine agreement in order to replace the broadcast channel.

3

Jumping ahead, we compare

the composition achieved here to that obtained in Chapter 4. In Chapter 4, the strong notion

of concurrent general composition is obtained. However, the protocol there relies on a common

reference string. In contrast, in this chapter, we obtain only the weaker notion of self-composition.

Nevertheless, our protocols are in the standard model and do not require any setup assumptions.

Discussion. We propose that the basic de�nition of secure computation should focus on the issues

of privacy and correctness (and independence of inputs). In contrast, the property of agreement

should be treated as an additional, and not central, feature. The bene�t of taking such a position

(irrespective of whether one is convinced conceptually) is that the feasibility of secure computation

is completely decoupled from the feasibility of Byzantine agreement. Thus, the lower bounds

relating to Byzantine agreement (and authenticated Byzantine agreement) do not imply anything

regarding secure computation. Indeed, as we show, \broadcast with abort" is su�cient for secure

computation. However, it lacks any avor of agreement in the classical sense. This brings us

to an important observation. Usually, proving a lower bound for a special case casts light on the

di�culties in solving the general problem. However, in the case of secure computation this is not the

case. Rather, the fact that the lower bounds of Byzantine agreement apply to secure computation

is due to marginal issues relating to unanimity regarding the delivery of outputs, and not due to

the main issues of security.

3.1.3 Related Work

We have recently learned of two independent and concurrent results [39, 40] studying a problem

similar to ours, although apparently for di�erent motivation.

4

In [39], Fitzi et al. study the question

of multi-party computation in the case that the number of faults is t < n=2. They show that in

this case, it is possible to achieve weak Byzantine agreement (where loosely speaking, either all

honest parties abort or all honest parties agree on the broadcasted value). (We note that their

protocol is probabilistic and \breaks" the t < n=3 lower-bound on deterministic weak Byzantine

Agreement protocols of Lamport [63].) They further show how this can be used in order to obtain

secure computation with unanimous abort and complete fairness for the case of t < n=2. Thus for

the range of n=2 � t < n=3 their solution achieves complete fairness whereas ours achieves only

partial fairness.

In subsequent work [40], Fitzi et al. studied the question of Byzantine agreement for any t < n

and whether its relaxation to weak Byzantine Agreement can be achieved without preprocessing.

They show that it is indeed possible to achieve (randomized) weak Byzantine Agreement for any

3

Unfortunately, full proofs regarding the composition of protocols using a broadcast channel do not appear in the

literature. In this footnote we momentarily allow ourselves to rely on the belief/conjecture that in the broadcast

model the protocol of [76] for t < n=2 self-composes concurrently, and the protocol of [52] for any t < n self-composes

in parallel. We can therefore conclude that in the point-to-point network, concurrent self-composition of secure

multi-party computation is possible for t < n=2, and parallel self-composition is possible for any t.

4

We were informed of this work while presenting our work at a seminar at MIT, February 14 2002.
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t < n, in O(t) rounds. They also show how their weak Byzantine Agreement protocol can be used

to obtain secure computation with unanimous abort and partial fairness for any t < n.

In comparison, we achieve secure computation with (non-unanimous) abort and partial fairness

for any t < n. However, our focus is di�erent. In particular, our results emphasize the fact that the

issue of agreement is not central to the task of secure computation. Furthermore, removing this

requirement enables us to remove the broadcast channel with almost no cost. This also results in

our obtaining a round-preserving transformation of secure protocols in the broadcast model to those

in the point-to-point model. This is in contrast to [39, 40] who use their weak Byzantine agreement

protocol in order to setup a public-key infrastructure for authenticated Byzantine agreement. They

therefore incur the cost of setting up this infrastructure along with a cost of t + 1 rounds for

simulating every broadcast in the original protocol. Our protocols are therefore signi�cantly more

round e�cient.

5

Finally we note that we can use the weak Byzantine Agreement protocol of [40]

to transform any generic r-round protocol for secure computation with abort into an (r+t)-round

protocol with unanimous abort (and the same level of fairness). This is achieved by having the

parties broadcast whether they received outputs or not after the protocol with abort concludes.

It is enough to use weak Byzantine agreement for this broadcast. We therefore reduce the O(tr)

round complexity of [40] to O(r+t), while achieving the same level of security.

Recall that Canetti in [14] introduced a communication model where the adversary has control

over the delivery of messages. Essentially, this de�nition also decouples secure computation from

agreement because parties are never guaranteed to get output. In particular, the adversary is

allowed to deliver output to whomever it wishes, and only these parties will ever receive output.

However, the motivation of [14] is di�erent; it aims to decouple the issue of guaranteed output

delivery from the main issues of secure computation. On the other hand, we focus on the question

of agreement by the parties on whether or not output was delivered.

3.2 De�nitions { Secure Computation

In this section we present de�nitions for secure multi-party computation. The basic description

and de�nitions are based on [44], which in turn follows [53, 4, 69, 13]. We actually consider a

number of de�nitions here. In particular, we present formal de�nitions for secure computation

with unanimous abort and with abort, with complete fairness, partial fairness, and no fairness. In

addition, we refer to secure computation without abort. This is the standard de�nition used when

more than half the parties are honest. According to this de�nition, all parties receive the output

and the adversary cannot disrupt the computation. However, we will not formally present this

de�nition here.

Notation: We denote by U

k

the uniform distribution over f0; 1g

k

; for a set S we denote s 2

R

S

when s is chosen uniformly from S; �nally, computational indistinguishability is denoted by

c

� and

statistical closeness by

s

�. The security parameter is denoted by k.

5

We note one subtle, yet important caveat. Given a generic protocol for secure computation that uses a broadcast

channel and runs for r rounds, we obtain an O(r)-round protocol that is secure with abort and partially fair (this

is in contrast to the O(tr) round complexity of [39, 40]). However, given a protocol that solves a speci�c secure

computation problem, our transformation does not achieve partial fairness. In order to achieve partial fairness, we

must revert to a generic protocol. On the other hand, the transformation of [39, 40] works for any protocol. Thus,

given a very e�cient protocol for a speci�c problem that achieves partial fairness, it may be \cheaper" to use [39, 40]

rather than our results.
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Multi-party computation. A multi-party protocol problem (for n parties P

1

; : : : ; P

n

) is cast by

specifying a random process that maps vectors of inputs to vectors of outputs (one for each party).

We refer to such a process as an n-ary functionality and denote it f : (f0; 1g

�

)

n

! (f0; 1g

�

)

n

, where

f = (f

1

; : : : ; f

n

). That is, for a vector of inputs x = (x

1

; : : : ; x

n

), the output-vector is a random

variable (f

1

(x); : : : ; f

n

(x)) ranging over vectors of strings. The output for the i

th

party (with input

x

i

) is de�ned to be f

i

(x).

Adversarial behavior. Loosely speaking, the aim of a secure multi-party protocol is to protect

the honest parties against dishonest behavior from the corrupted parties. This \dishonest behavior"

can manifest itself in a number of ways; in this paper we focus on malicious adversaries. Such

an adversary may arbitrarily deviate from the speci�ed protocol. When considering malicious

adversaries, there are certain undesirable actions that cannot be prevented. Speci�cally, parties

may refuse to participate in the protocol, may substitute their local input (and enter with a di�erent

input) and may cease participating in the protocol before it terminates.

Formally, the adversary is modeled by a non-uniform Turing machine: in the computational

model this machine is polynomial-time whereas in the information-theoretic model it is unbounded.

(We note that by standard arguments, we can assume that the adversary is deterministic.) For

simplicity, in this work we consider a static corruption model. Therefore, at the beginning of the

execution, the adversary is given a set I of corrupted parties which it controls. Then, throughout

the computation, the adversary obtains the views of the corrupted parties, and provides them with

the messages that they are to send.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an

adversary can do in the protocol to what it can do in an ideal scenario that is secure by de�nition.

This is formalized by considering an ideal computation involving an incorruptible trusted party to

whom the parties send their inputs. The trusted party computes the functionality on the inputs and

returns to each party its respective output. Loosely speaking, a protocol is secure if any adversary

interacting in the real protocol (where no trusted party exists) can do no more harm than if it

was involved in the above-described ideal computation. We begin by formally de�ning this ideal

computation.

3.2.1 Execution in the ideal model

The ideal model di�ers for each of the de�nitions. We therefore present each one separately (see

Section 3.1.2 for an outline of the di�erent de�nitions).

1. Secure computation with unanimous abort and complete fairness: This de�nition

requires complete fairness. That is, either all parties (including the corrupted parties) receive output

or all parties abort. Therefore, the abort is also unanimous. We note that this de�nition is only

achievable when the number of corrupted parties is less than n=2 (i.e., jIj < n=2), even assuming

a broadcast channel. Recall that a malicious party can always substitute its input or refuse to

participate. Therefore, the ideal model takes these inherent adversarial behaviors into account; i.e.,

by giving the adversary the ability to do this also in the ideal model. An ideal execution proceeds

as follows:

Inputs: Each party obtains its respective input from the input vector x = (x

1

; : : : ; x

n

).
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Send inputs to trusted party: An honest party always sends its input x to the trusted party. The

corrupted parties may, depending on their inputs fx

i

g

i2I

, either abort or send modi�ed values

x

0

i

2 f0; 1g

jx

i

j

to the trusted party. Denote the sequence of inputs obtained by the trusted

party by x

0

= (x

0

1

; : : : ; x

0

n

) (for honest parties, x

0

= x always).

Trusted party answers the parties: In case x

0

is a valid input sequence, the trusted party computes

f(x

0

) and sends f

i

(x

0

) to party P

i

for every i. Otherwise (i.e., in case a corrupted party

aborted or sent a non-valid input), the trusted party replies to all parties with a special abort

symbol ?.

Outputs: An honest party always outputs the message that it received from the trusted party,

whereas the corrupted parties output nothing (say, �). On the other hand, the adversary

outputs an arbitrary function of the initial inputs fx

i

g

i2I

and the messages the corrupted

parties received from the trusted party.

De�nition 3.2.1 (ideal-model computation with unanimous abort and complete fairness): Let

f : (f0; 1g

�

)

n

! (f0; 1g

�

)

n

be an n-ary functionality, where f = (f

1

; : : : ; f

n

), and let I � [n] be

such that for every i 2 I, the adversary A controls P

i

(this is the set of corrupted parties). Then,

the joint execution of f under (A; I) in the ideal model on input vector x = (x

1

; : : : ; x

n

), denoted

ideal

(1)

f;(A;I)

(x), is de�ned as the output vector of P

1

; : : : ; P

n

and A resulting from the above described

ideal process.

2. Secure computation with unanimous abort and partial fairness: As before, a malicious

party can always substitute its input or refuse to participate. However, when there are a half or

less honest parties, it is not possible to continue computing in the case that the adversary ceases

prematurely (this de�nition is usually used when the number of corrupted parties is not limited in

any way). Thus, we cannot prevent the \early abort" phenomenon in which the adversary receives

its output, whereas the honest parties do not receive theirs. Nevertheless, party P

1

is speci�ed

so that if it is honest, then complete fairness is achieved. In contrast, if it corrupted, then the

adversary receives the corrupted parties' outputs �rst and then can decide whether or not the

honest parties receive output or abort. We note that the abort is unanimous and thus if one honest

party aborts, then so do all honest parties. An ideal execution proceeds as follows:

Inputs: Each party obtains its respective input from the input vector x = (x

1

; : : : ; x

n

).

Send inputs to trusted party: An honest party always sends its input x to the trusted party. The

corrupted parties may, depending on their inputs fx

i

g

i2I

, either abort or send modi�ed values

x

0

i

2 f0; 1g

jx

i

j

to the trusted party. Denote the sequence of inputs obtained by the trusted

party by x

0

= (x

0

1

; : : : ; x

0

n

) (for honest parties, x

0

= x always).

Trusted party answers �rst party: In case x

0

is a valid input sequence, the trusted party computes

f(x

0

) and sends f

1

(x

0

) to party P

1

. Otherwise (i.e., in case a corrupted party aborted or sent

a non-valid input), the trusted party replies to all parties with a special symbol, ?.

Trusted party answers remaining parties: If the �rst party is not corrupted (i.e., 1 62 I), then the

trusted party sends f

j

(x

0

) to party P

j

, for every j.

In case the �rst party is corrupted, then for every i 2 I, the trusted party sends f

i

(x) to

party P

i

(i.e., the corrupted parties receive their outputs �rst). Then P

1

, depending on the
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views of all the corrupted parties and controlled by the adversary, instructs the trusted party

to either send f

j

(x

0

) to P

j

for every j 62 I, or to send ? to P

j

for every j 62 I.

6

Outputs: An honest party always outputs the message that it received from the trusted party,

whereas the corrupted parties output nothing (say, �). On the other hand, the adversary

outputs an arbitrary function of the initial inputs fx

i

g

i2I

and the messages the corrupted

parties received from the trusted party.

De�nition 3.2.2 (ideal-model computation with unanimous abort and partial fairness): Let f :

(f0; 1g

�

)

n

! (f0; 1g

�

)

n

be an n-ary functionality, where f = (f

1

; : : : ; f

n

), and let I � [n] be such

that for every i 2 I, the adversary A controls P

i

(this is the set of corrupted parties). Then,

the joint execution of f under (A; I) in the ideal model on input vector x = (x

1

; : : : ; x

n

), denoted

ideal

(2)

f;(A;I)

(x), is de�ned as the output vector of P

1

; : : : ; P

n

and A resulting from the above described

ideal process.

3. Secure computation with unanimous abort and no fairness: This de�nition is very

similar to the previous one, except that there is no speci�ed party. Rather, the adversary �rst

receives the output of the corrupted parties. Then, it decides whether all the honest parties receive

output or they all abort. Formally,

Inputs: Each party obtains its respective input from the input vector x = (x

1

; : : : ; x

n

).

Send inputs to trusted party: An honest party always sends its input x to the trusted party. The

corrupted parties may, depending on their inputs fx

i

g

i2I

, either abort or send modi�ed values

x

0

i

2 f0; 1g

jx

i

j

to the trusted party. Denote the sequence of inputs obtained by the trusted

party by x

0

= (x

0

1

; : : : ; x

0

n

) (for honest parties, x

0

= x always).

Trusted party answers adversary: In case x

0

is a valid input sequence, the trusted party computes

f(x

0

) and sends f

i

(x

0

) to party P

i

for every i 2 I. Otherwise (i.e., in case a corrupted party

aborted or sent a non-valid input), the trusted party replies to all parties with a special

symbol, ?.

Trusted party answers remaining parties: The adversary, depending on the views of all the cor-

rupted parties, instructs the trusted party to either send f

j

(x

0

) to P

j

for every j 62 I, or to

send ? to P

j

for every j 62 I.

Outputs: An honest party always outputs the message that it received from the trusted party,

whereas the corrupted parties output nothing (say, �). On the other hand, the adversary

outputs an arbitrary function of the initial inputs fx

i

g

i2I

and the messages the corrupted

parties received from the trusted party.

De�nition 3.2.3 (ideal-model computation with unanimous abort and no fairness): Let f : (f0; 1g

�

)

n

!

(f0; 1g

�

)

n

be an n-ary functionality, where f = (f

1

; : : : ; f

n

), and let I � [n] be such that for every

i 2 I, the adversary A controls P

i

(this is the set of corrupted parties). Then, the joint execution

of f under (A; I) in the ideal model on input vector x = (x

1

; : : : ; x

n

), denoted ideal

(3)

f;(A;I)

(x), is

de�ned as the output vector of P

1

; : : : ; P

n

and A resulting from the above described ideal process.

6

An equivalent de�nition to this one says that P

1

always instructs the trusted party to send the outputs or ?.

However, an honest P

1

always instructs the trusted party to provide all parties with outputs. In contrast, a corrupted

party can decide whatever it wishes.
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The above three de�nitions all relate to the case of secure computation with unanimous abort. We

now present the analogous de�nitions for the case of secure computation with abort. The only

di�erence between the de�nitions is regarding the \trusted party answers remaining parties" item.

In the above de�nitions all honest parties either receive their output or they receive ?. However,

here some of these parties may receive their (correct) output and some may receive ?. We only

present de�nitions for partial and no fairness (complete fairness only makes sense if all parties,

including the adversary, either receive their outputs or ?).

4. Secure computation with abort and partial fairness: As we have mentioned, the only

di�erence between this de�nition and the analogous de�nition with unanimous abort is that if

party P

1

is corrupted, then it may designate who does and does not receive output. We repeat

only the relevant item:

Trusted party answers remaining parties: If the �rst party is not corrupted (i.e., 1 62 I), then the

trusted party sends f

j

(x

0

) to party P

j

, for every j.

In case the �rst party is corrupted, then for every i 2 I, the trusted party sends f

i

(x

0

) to P

i

(i.e., the corrupted parties receive their output �rst). Then P

1

, depending on the views of all

the corrupted parties and controlled by the adversary, chooses a subset of the honest parties

J � [n] n I and sends J to the trusted party. The trusted party then sends f

j

(x

0

) to P

j

for

every j 2 J , and ? to all other honest parties.

De�nition 3.2.4 (ideal-model computation with abort and partial fairness): Let f : (f0; 1g

�

)

n

!

(f0; 1g

�

)

n

be an n-ary functionality, where f = (f

1

; : : : ; f

n

), and let I � [n] be such that for every

i 2 I, the adversary A controls P

i

(this is the set of corrupted parties). Then, the joint execution

of f under (A; I) in the ideal model on input vector x = (x

1

; : : : ; x

n

), denoted ideal

(4)

f;(A;I)

(x), is

de�ned as the output vector of P

1

; : : : ; P

n

and A resulting from the above described ideal process.

5. Secure computation with abort and no fairness: This de�nition is very similar to the

previous one, except that the �rst party P

1

does not receive its output �rst. Rather, the adversary

always receives the output of the corrupted parties �rst. Then, it designates which honest parties

receive their output and which receive ?. We repeat only the relevant item:

Trusted party answers remaining parties: The adversary, depending on the views of all the cor-

rupted parties, chooses a subset of the honest parties J � [n] n I and sends J to the trusted

party. The trusted party then sends f

j

(x

0

) to P

j

for every j 2 J , and ? to all other honest

parties.

De�nition 3.2.5 (ideal-model computation with abort and no fairness): Let f : (f0; 1g

�

)

n

!

(f0; 1g

�

)

n

be an n-ary functionality, where f = (f

1

; : : : ; f

n

), and let I � [n] be such that for every

i 2 I, the adversary A controls P

i

(this is the set of corrupted parties). Then, the joint execution

of f under (A; I) in the ideal model on input vector x = (x

1

; : : : ; x

n

), denoted ideal

(5)

f;(A;I)

(x), is

de�ned as the output vector of P

1

; : : : ; P

n

and A resulting from the above described ideal process.

3.2.2 Execution in the real model

We now de�ne a real model execution. In the real model, the parties execute the protocol in a

synchronous network with rushing. That is, the execution proceeds in rounds: each round consists

of a send phase (where parties send their message from this round) followed by a receive phase
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(where they receive messages from other parties). We stress that the messages sent by an honest

party in a given round depend on the messages that it received in previous rounds only. On the

other hand, the adversary can compute its messages in a given round based on the messages that

it receives from the honest parties in the same round. The term rushing refers to this additional

adversarial capability.

In this work, we consider a scenario where the parties are connected via a fully connected

point-to-point network (and there is no broadcast channel). We refer to this model as the point-

to-point model (in contrast to the broadcast model where the parties are given access to a physical

broadcast channel in addition to the point-to-point network). The communication lines between

parties are assumed to be ideally authenticated and private (and thus the adversary cannot modify

or read messages sent between two honest parties).

7

We assume that any message sent by an honest

party to another honest party is received immediately. Finally, we note that we do not assume a

preprocessing setup phase.

Throughout the execution, the honest parties all follow the instructions of the prescribed pro-

tocol, whereas the corrupted parties receive their (arbitrary) instructions from the adversary. Like-

wise, at the conclusion of the execution, the honest parties output their prescribed output from the

protocol, whereas the corrupted parties output nothing. On the other hand, the adversary outputs

an arbitrary function of its view of the computation (which contains the views of all the corrupted

parties). Without loss of generality, we assume that the adversary always outputs its view (and

not some function of it). Formally,

De�nition 3.2.6 (real-model execution): Let f be an n-ary functionality and let � be a multi-

party protocol for computing f . Furthermore, let I � [n] be such that for every i 2 I, the adversary

A controls P

i

(this is the set of corrupted parties). Then, the joint execution of � under (A; I) in

the real model on input vector x = (x

1

; : : : ; x

n

), denoted real

�;(A;I)

(x), is de�ned as the output

vector of P

1

; : : : ; P

n

and A resulting from the protocol interaction, where for every i 2 I, party

P

i

computes its messages according to A, and for every j 62 I, party P

j

computes its messages

according to �.

3.2.3 Security as emulation of a real execution in the ideal model

Having de�ned the ideal and real models, we can now de�ne security of protocols. Loosely speaking,

the de�nition asserts that the adversary can do no more harm in a real protocol execution that in

the ideal model (where security trivially holds). This is formulated by saying that adversaries in

the ideal model are able to simulate adversaries in an execution of a secure real-model protocol.

The de�nition of security comes in two avors. In the �rst, we consider polynomial-time bounded

adversaries, and require that the simulation be such that the real-model and ideal-model output

7

We note that when the parties are assumed to be computationally bounded, privacy can be achieved over

authenticated channels by using public-key encryption. Therefore, in such a setting, the requirement that the channels

be private is not essential. However, we include it for simplicity.

One can argue that achieving authenticated and private channels in practice essentially requires a trusted pre-

processing phase for setting up a public-key infrastructure. Therefore, there is no reason not to utilize this prepro-

cessing phase in the secure multi-party computation as well. In such a case, the preprocessing phase could be used

in order to implement authenticated Byzantine Agreement (and thereby achieve secure broadcast for any number

of corrupted parties). However, we claim that the issue of achieving \secure communication channels" should be

separated from the issue of achieving \secure broadcast". An example of why this is important was demonstrated in

Chapter 2 where we showed that authenticated Byzantine Agreement does not compose (in parallel or concurrently)

when 2/3 or less of the parties are honest. On the other hand, secure channels can be achieved without any limitation

on the protocol using them [18]; in particular, without restrictions on composability and the number of faults.
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distributions are computationally indistinguishable. On the other hand, in the second, we consider

unbounded adversaries and require that the simulation be such that the output distributions of the

two models are statistically close.

De�nition 3.2.7 (computational security): Let f and � be as above. We say that protocol �

is a protocol for computational t-secure computation with unanimous abort (resp., with abort) and

with complete fairness (resp., with partial fairness or with no fairness), if for every non-uniform

polynomial-time adversary A for the real model, there exists a non-uniform polynomial-time adver-

sary S for the ideal model, such that for every I � [n] with jIj < t,

fideal

(�)

f;(S;I)

(x)g

k2N;x2(f0;1g

k

)

n

c

� freal

�;(A;I)

(x)g

k2N;x2(f0;1g

k

)

n

where the value of � 2 f1; 2; 3; 4; 5g depends on whether secure computation with unanimous abort

or with abort is being considered, and whether complete fairness, partial fairness or no fairness is

required.

De�nition 3.2.8 (information-theoretic security): Let f and � be as above. We say that protocol

� is a protocol for information-theoretic t-secure computation with unanimous abort (resp., with abort)

and with complete fairness (resp., with partial fairness or with no fairness), if for every non-uniform

adversary A for the real model, there exists a non-uniform adversary S for the ideal model such

that for every I � [n] with jIj < t,

fideal

(�)

f;(S;I)

(x)g

k2N;x2(f0;1g

k

)

n

s

� freal

�;(A;I)

(x)g

k2N;x2(f0;1g

k

)

n

where the value of � 2 f1; 2; 3; 4; 5g depends on whether secure computation with unanimous abort

or with abort is being considered, and whether complete fairness, partial fairness or no fairness is

required.

3.3 Broadcast with Abort

In this section, we present a weak variant of the Byzantine Generals problem, that we call \broadcast

with abort". The main idea is to weaken both the agreement and validity requirements so that some

parties may output the broadcast value x while others output ?. Formally,

De�nition 3.3.1 (broadcast with abort): Let P

1

; : : : ; P

n

, be n parties and let P

1

be the dealer

with input x. In addition, let A be an adversary who controls up to t of the parties (which may

include P

1

). A protocol solves the broadcast with abort problem, tolerating t corruptions, if for any

adversary A the following three properties hold:

1. Agreement: If an honest party outputs x

0

, then all honest parties output either x

0

or ?.

2. Validity: If P

1

is honest, then all honest parties output either x or ?.

3. Non-triviality: If all parties are honest, then all parties output x.

(The non-triviality requirement is needed to rule out a protocol in which all parties simply output ?

and halt.) We now present a simple protocol that solves the broadcast with abort problem for any

t. As we will see later, despite its simplicity, this protocol su�ces for obtaining secure computation

with abort. The protocol appears in Figure 3.1.
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Protocol BWA

� Input: P

1

has a value x to broadcast.

� The Protocol:

1. P

1

sends x to all parties.

2. Denote by x

i

the value received by P

i

from P

1

in the previous round. Then, every party

P

i

(for i > 1) sends its value x

i

to all other parties.

3. Denote the value received by P

i

from P

j

in the previous round by x

i

j

(recall that x

i

denotes

the value P

i

received from P

1

in the �rst round). Then, P

i

outputs x

i

if this is the only

value that it saw (i.e., if x

i

= x

i

2

= � � � = x

i

n

). Otherwise, it outputs ?.

We note that if P

i

did not receive any value in the �rst round, then it always outputs ?.

Figure 3.1: The broadcast with abort protocol

Proposition 3.3.2 Protocol BWA of Figure 3:1 solves the broadcast with abort problem, and tol-

erates any t < n corruptions.

Proof: The fact that the non-triviality condition is ful�lled is immediate. We now prove the other

two conditions:

1. Agreement: Let P

i

be an honest party, such that P

i

outputs a value x

0

. Then, it must be

that P

i

received x

0

from P

1

in the �rst round (i.e., x

i

= x

0

). Therefore, P

i

sent this value to

all other parties in the second round. Now, a party P

j

will output x

j

if this is the only value

that it saw during the execution. However, as we have just seen, P

j

de�nitely saw x

0

in the

second round. Thus, P

j

will only output x

j

if x

j

= x

0

. On the other hand, if P

j

does not

output x

j

, then it outputs ?.

2. Validity: If P

1

is honest, then all parties receive x in the �rst round. Therefore, they will

only output x or ?.

This completes the proof.

3.3.1 Strengthening Broadcast with Abort

A natural question to ask is whether or not we can strengthen De�nition 3.3.1 in one of the following

two ways (and still obtain a protocol for t � n=3):

1. Strengthen the agreement requirement: If an honest party outputs a value x

0

, then all honest

parties output x

0

. (On the other hand, the validity requirement remains unchanged.)

2. Strengthen the validity requirement: If P

1

is honest, then all honest parties output x. (On the

other hand, the agreement requirement remains unchanged.)

It is easy to see that the above strengthening of the agreement requirement results in the de�nition

of weak Byzantine Generals. (The validity and non-triviality requirements combined together are

equivalent to the validity requirement of weak Byzantine Generals.) Therefore, there exists no

deterministic protocol for the case of t � n=3. For what can be done if one utilizes probabilistic
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protocols, see the section on recent related work (Section 3.1.3). Regarding the strengthening of the

validity requirement, the resulting de�nition implies a problem known as \Crusader Agreement".

This was shown to be unachievable for any t � n=3 by Dolev in [31]. We therefore conclude that

the \broadcast with abort" requirements cannot be strengthened in either of the above two ways

(for deterministic protocols), without incurring a t < n=3 lower bound.

3.4 Secure Computation with Abort and No Fairness

In this section, we show that any protocol for secure computation (with unanimous abort and any

level of fairness) that uses a broadcast channel can be \compiled" into a protocol for the point-

to-point network that achieves secure computation with abort and no fairness. Furthermore, the

fault tolerance of the compiled protocol is the same as the original one. Actually, we assume that

the protocol is such that all parties terminate in the same round. We say that such a protocol has

simultaneous termination. Without loss of generality, we also assume that all parties generate their

output in the last round. The result of this section is formally stated in the following theorem:

Theorem 3.4.1 (Theorem 3.1.1 { restated): There exists a (polynomial-time) protocol compiler

that takes any protocol � (with simultaneous termination) for the broadcast model, and outputs

a protocol �

0

for the point-to-point model such that the following holds: If � is a protocol for

information-theoretic (resp., computational) t-secure computation with unanimous abort and any

level of fairness, then �

0

is a protocol for information-theoretic (resp., computational) t-secure

computation with abort and no fairness.

Combining Theorem 3.4.1 with known protocols (speci�cally, [76] and [52]

8

), we obtain the following

corollaries:

Corollary 3.4.2 (information-theoretic security { compilation of [76]): For any probabilistic polynomial-

time n-ary functionality f , there exists a protocol in the point-to-point model, for the information-

theoretic n=2-secure computation of f with abort and no fairness.

We note that this result is optimal in the following sense. Ben-Or et al. [10] showed that there are

functions for which there do not exist information-theoretically private protocols when t � n=2.

The de�nition of a \private" (rather than \secure") protocol, is regarding the behavior of corrupted

parties. In a private protocol, corrupted parties follow the protocol speci�cation, but attempt to

learn more information than intended (such adversarial behavior is known as passive or semi-

honest). Therefore, security with abort implies privacy, and this means that for information-

theoretic security, resilience of t � n=2 is not possible. On the other hand, the result is not

optimal regarding fairness. (In particular, the recent [39] achieve an analogous result with complete

fairness.)

Corollary 3.4.3 (computational security { compilation of [52]): For any probabilistic polynomial-

time n-ary functionality f , there exists a protocol in the point-to-point model, for the computational

t-secure computation of f with abort and no fairness, for any t.

We now proceed to prove Theorem 3.4.1.

8

Both the [76] and [52] protocols have simultaneous termination
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Proof of Theorem 3.4.1: Intuitively, we construct a protocol for the point-to-point model from

a protocol for the broadcast model, by having the parties in the point-to-point network simulate

the broadcast channel. When considering \pure" broadcast (i.e., Byzantine Generals), this is not

possible for t � n=3. However, it su�ces to simulate the broadcast channel using a protocol for

\broadcast with abort". Recall that in such a protocol, either the correct value is delivered to all

parties, or some parties output ?. The idea is to halt the computation in the case that any honest

party receives ? from a broadcast execution. The point at which the computation halts dictates

which parties (if any) receive output. The key point is that if no honest party receives ?, then

the broadcast with abort protocol perfectly simulates a broadcast channel. Therefore, the result is

that the original protocol (for the broadcast channel) is simulated perfectly until the point that it

may prematurely halt.

Components of the compiler:

1. Broadcast with abort executions: Each broadcast of the original protocol (using the assumed

broadcast channel) is replaced with an execution of the broadcast with abort protocol.

2. Blank rounds: Following each broadcast with abort execution, a blank round is added in

which no protocol messages are sent. Rather, these blank rounds are used by parties to notify

each other that they have received ?. Speci�cally, if a party receives ? in a broadcast with

abort execution, then it sends ? to all parties in the blank round that immediately follows.

Likewise, if a party receives ? in a blank round, then it sends ? to all parties in the next

blank round (it also does not participate in the next broadcast).

Thus each round of the original protocol is transformed into 3 rounds in the compiled protocol

(2 rounds for broadcast with abort and an additional blank round). We now proceed to formally

de�ne the protocol compiler:

Construction 1 (protocol compiler): Given a protocol �, the compiler produces a protocol �

0

.

The speci�cation of protocol �

0

is as follows:

� The parties use broadcast with abort in order to emulate each broadcast message of protocol �.

Each round of � is expanded into 3 rounds in �

0

: broadcast with abort is run in the �rst 2

rounds, and the third round is a blank round. Point-to-point messages of � are sent unmodi�ed

in �

0

. The parties emulate � according to the following instructions:

1. Broadcasting messages: Let P

i

be a party who is supposed to broadcast a message m in the

j

th

round of �. Then, in the j

th

broadcast simulation of �

0

(i.e., in rounds 3j and 3j + 1

of �

0

), all parties run an execution of broadcast with abort in which P

i

plays the dealer

role and sends m.

2. Sending point-to-point messages: Any message that P

i

is supposed to send to P

j

over the

point-to-point network in the j

th

round of � is sent by P

i

to P

j

over the point-to-point

network in round 3j of �

0

.

3. Receiving messages: For each message that party P

i

is supposed to receive from a broadcast

in �, party P

i

participates in an execution of broadcast with abort as a receiver. If its

output from this execution is a message m, then it appends m to its view (to be used for

determining its later steps according to �).

If it receives ? from this execution, then it sends ? to all parties in the next round (i.e., in

the blank round following the execution of broadcast with abort), and halts immediately.
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4. Blank rounds: If a party P

i

receives ? in a blank round, then it sends ? to all parties in

the next blank round and halts. In the 2 rounds preceding the next blank round, Party P

i

does not send any point-to-point messages or messages belonging to a broadcast execution.

(We note that if this blank round is the last round of the execution, then P

i

simply halts.)

5. Output: If a party P

i

received ? at any point in the execution (in an execution of broadcast

with abort or in a blank round), then it outputs ?. Otherwise, it outputs the value speci�ed

by �.

In order to prove that �

0

is t-secure with abort and no fairness, we �rst de�ne a di�erent trans-

formation of � to

~

� which is a hybrid protocol between � and �

0

. In particular,

~

� is still run in

the broadcast model. However, it provides the adversary with the additional ability of prematurely

halting honest parties. We now de�ne the hybrid protocol

~

� and show that it is t-secure with abort

and no fairness:

Lemma 3.4.4 Let � be a protocol in the broadcast model that is computational (resp., information-

theoretic) t-secure with unanimous abort and any level of fairness. Then, de�ne protocol

~

� (also

for the broadcast model) as follows:

1. Following each round of �, add a blank round.

2. If in a blank round, P

i

receives a ? message, then P

i

sends ? to P

j

for all j 6= i in the next

blank round and halts. P

i

also does not broadcast any message or send any point-to-point

messages in the next round of � (before the blank round where it sends all the ? messages).

3. Apart from the above, the parties follow the instructions of �.

4. Output: If a party P

i

received ? in any blank round, then it outputs ?. Otherwise, it outputs

the value speci�ed by �.

Then,

~

� is computational (resp., information-theoretic) t-secure with abort and no fairness.

Proof: We prove this theorem for the case that � is computationally t-secure with unanimous abort

and partial fairness. The other cases (information theoretic security and security with complete

fairness or no fairness) are proved in a similar way. Let

~

A be a real-model adversary attacking

~

�. Our aim is to construct an ideal-model simulator

~

S for

~

A. In order to do this, we must use

the fact that for any adversary A attacking protocol �, there exists an ideal-model simulator S.

Unfortunately we cannot apply S to

~

A because S is a simulator for protocol � and

~

A participates

in protocol

~

�. We therefore �rst construct an adversary A that attacks � from the adversary

~

A

that attacks

~

�. The construction of A is such that the output distribution of an execution of �

with A is very similar to the output distribution of an execution of

~

� with

~

A. Having constructed

A, it is then possible to apply the simulator S that we know is guaranteed to exist. We therefore

obtain a simulator

~

S for

~

A by �rst \transforming"

~

A into A and then applying S. As we will show,

the resulting simulator

~

S is as required for

~

�. Details follow.

As we have mentioned, we �rst de�ne the adversary A who attacks �. Adversary A internally

invokes

~

A and therefore has internal communication with

~

A and external communication with the

honest parties executing �.
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Adversary A for �:

� Input: A receives an input sequence fx

i

g

i2I

and a series of random-tapes fr

i

g

i2I

. (Recall that

~

A controls all parties in the set I. Thus, corrupted party P

i

's input and random-tape equal x

i

and r

i

, respectively.)

� Execution:

1. Invoke

~

A: A begins by invoking

~

A upon input sequence fx

i

g

i2I

and random-tapes fr

i

g

i2I

.

2. Emulation before

~

A sends any ? messages: A internally passes to

~

A all the messages

that it externally receives from the honest parties (through broadcast or point-to-point

communication). Likewise, A externally broadcasts in � any message that

~

A broadcasts

in

~

�, and A externally sends P

j

in � any message that

~

A sends P

j

in

~

�.

3. Emulation after

~

A sends a ? message: Once

~

A sends a ? message in an execution of

~

�,

the honest parties in � and

~

� may behave di�erently (in particular, a party receiving ?

may continue to send messages in �, whereas it would halt in

~

�). Therefore, A �lters

messages sent by honest parties in � so that

~

A's view equals what it would in an execution

of

~

�. That is:

In the round of � following the �rst ? message sent by

~

A, adversary A forwards to

~

A only

the point-to-point and broadcast messages sent by a party P

j

who did not receive ? from

~

A

in the previous (simulated) blank round of

~

�. Furthermore, A simulates for

~

A the sending

of all the ? messages that would be sent in the next blank round of

~

� (if one exists), and

halts.

4. Output: A outputs whatever

~

A does.

Before proceeding, we show that the only di�erence between an execution of � with A, and

~

�

with

~

A, is that some additional honest parties may output ? in the execution of

~

�. That is, we

claim that the joint distribution of the outputs of all parties not outputting ? and the adversary,

is identical in � and

~

�. We begin with some notation:

� Let real

�;(A;I)

(x; r) be the global output of an execution of � with adversary A, inputs

x, and random-tapes r (i.e., r = (r

1

; : : : ; r

n

) where P

i

receives random-tape r

i

). (Thus,

real

�;(A;I)

(x) = freal

�;(A;I)

(x;U

jrj

)g.)

� For any subset J � [n], denote by real

�;(A;I)

(x; r) j

J

, the restriction of real

�;(A;I)

(x; r) to

the outputs of A and all parties P

j

for j 2 J . We stress that A's output is included in this

restriction.

� In any execution of

~

�, it is possible to divide the parties into those who output ? and those

who do not output ?. We note that the set of parties outputting ? is chosen by the adversary

~

A and is dependent on the parties' inputs x and random-tapes r. We denote by J = J

~

A

(x; r)

the set of parties who do not output ? in an execution of

~

� with adversary

~

A (and where the

inputs and random-tapes are x and r). (Notice that J

~

A

is a �xed function depending only on

x and r.) We also denote by J

~

A

(x) a random variable taking values over J

~

A

(x; r) for uniformly

distributed r.

We now consider the joint distribution of the outputs of the adversary and the parties in J

~

A

(x; r)

(i.e., those not outputting ?). We claim that these distributions are identical in � with A and in

~

� with

~

A. Using the above notation, we claim that for every adversary

~

A and set of corrupted

parties I, and for all input and random-tape sequences x and r,

real

�;(A;I)

(x; r)j

J

~

A

(x;r)

= real

~

�;(

~

A;I)

(x; r)j

J

~

A

(x;r)

(3.1)
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where A is as de�ned above. We now prove Eq. (3.1). First, it is clear that

~

A's view in a real

execution of

~

� is identical to its view in the simulation by A. Therefore, A's output in � equals

~

A's

output in

~

�. Next, notice that if there exists an honest party that does not output ? in

~

�, then

it must be that ? messages were sent in the last blank round only. However, this means that any

honest party not receiving such a message has an identical view in � and

~

�. Therefore, the outputs

of all such parties are identical in � and

~

�. Eq. (3.1) follows. We stress that the parties who

output ? in

~

A may have very di�erent outputs in A (and in particular may output their prescribed

outputs). Nevertheless, at this stage we are only interested in those parties not outputting ?.

We now proceed to construct a simulator

~

S for

~

A. Intuitively,

~

S works by using the simulator

S for A, where A is derived from

~

A as above. Recall that A is an adversary for the secure protocol

�, and thus a simulator S is guaranteed to exist for A.

Simulator

~

S: First consider an adversary A for � constructed from the adversary

~

A as described

above. By the security requirements of �, for every adversary A there exists an ideal-model

simulator S for A. Simulator

~

S for

~

A works by emulating an ideal execution for S. Recall that

~

S

works in an ideal model for secure computation with abort and no fairness, whereas S works in an

ideal model for secure computation with unanimous abort and partial fairness. Further recall that

where partial fairness holds, there are two cases depending on whether or not P

1

is corrupted. If

P

1

is not corrupted, then essentially all parties receive output at the same time. If P

1

is corrupted,

then the adversary receives the corrupted parties' outputs �rst and then decides whether the honest

parties all receive output or all abort.

We now describe the simulator:

~

S receives input series fx

i

g

i2I

and internally invokes S upon

the same inputs fx

i

g

i2I

. Then,

~

S works as an intermediary between S and the trusted party. That

is,

~

S obtains the input values fx

0

i

g

i2I

sent by S and externally sends these same values to the

trusted party. Once

~

S forwards these inputs to the trusted party, it receives back all the corrupted

parties' outputs (recall that

~

S interacts in an ideal model with no fairness).

~

S then forwards these

outputs to S. We distinguish two cases:

1. P

1

is not corrupted: in this case, S concludes at this point, outputting some value.

2. P

1

is corrupted: in this case, S �rst instructs the trusted party to either send all the honest

parties their outputs or send them all ?. S then concludes, outputting some value.

~

S ignores the instruction sent to the trusted party in the second case, and sets its output to be

whatever S output.

It remains to de�ne the set J that

~

S sends to the trusted party in the \trusted party answers

remaining parties" stage of its ideal execution (recall that all honest parties in J receive their

output and all others receive ?). First notice that the string output by S is computationally

indistinguishable to A's output from a real execution. However, by the de�nition of A, this output

contains

~

A's view of an execution of

~

�. Furthermore,

~

A's view fully de�nes which honest parties

in an execution of

~

� output ? and which receive their output. In particular, if

~

A sent a ? message

before the last blank round, then all honest parties abort (and J = �). Otherwise, all parties receive

output except for those receiving ? messages in the last blank round. Therefore,

~

S examines this

view and de�nes the set J accordingly. Once J is de�ned,

~

S sends it to the trusted party and halts.

This completes the description of

~

S.

We now wish to show that the output of an ideal execution with abort and no fairness with adversary

~

S is computationally indistinguishable to the output of a real execution of

~

� with

~

A. We begin by

showing an analog to Eq. (3.1) in the ideal model. That is, we show that the outputs of parties
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not outputting ? in an execution of

~

� are the same in an ideal execution (by Def. 2) with S and

in an ideal execution (by Def. 5) with

~

S. Formally, we claim the following: For every set I, every

set of inputs x and every random-tape r (for S or

~

S),

ideal

(5)

f;(

~

S;I)

(x; r)j

J

~

S

(x;r)

= ideal

(2)

f;(S;I)

(x; r)j

J

~

S

(x;r)

(3.2)

where S and

~

S are invoked with random-tape r, and where J

~

S

(x; r) equals the set of parties in

the ideal execution with

~

S who do not output ?. (I.e., J

~

S

(x; r) equals the set J sent by

~

S to

the trusted party when the input vector equals x and its random-tape equals r.) In order to see

that Eq. (3.2) holds, notice the following. First,

~

S (upon input fx

i

g

i2I

and random-tape r) sends

exactly the same inputs to the trusted party as S does (upon input fx

i

g

i2I

and random-tape r).

Now, the outputs of all honest parties not outputting ? are �xed by x and the inputs sent to the

trusted party by the simulators S or

~

S. Therefore, if S and

~

S send the same inputs, it follows that

all parties not outputting ? have exactly the same output. In addition,

~

S outputs exactly the same

string that S outputs. Eq. (3.2) therefore follows.

By assumption, � is computationally t-secure with unanimous abort and partial fairness. It

therefore holds that for every set I � [n] such that jIj < t, and for every set J � [n]

n

ideal

(2)

f;(S;I)

(x)j

J

o

c

�

n

real

�;(A;I)

(x)j

J

o

Next, notice that the sets J

~

S

and J

~

A

are fully de�ned given

~

A and

~

S's outputs respectively. (Recall

that J

~

S

equals the set of parties not outputting ? in an ideal execution with

~

S, and J

~

A

equals the

set of parties not outputting ? in a real execution of

~

� with

~

A.) Furthermore, by the de�nitions

of A and S, it follows that their outputs also fully de�ne J

~

S

and J

~

A

. Therefore, J

~

S

(resp., J

~

A

) is

part of the global output of ideal (resp., real). This implies that,

n

ideal

(2)

f;(S;I)

(x)j

J

~

S

(x)

o

c

�

n

real

�;(A;I)

(x)j

J

~

A

(x)

o

(3.3)

(Otherwise, we could distinguish ideal

(2)

f;(S;I)

(x) from real

�;(A;I)

(x) by comparing the restriction

to J

~

S

or to J

~

A

, respectively.) Combining Eq. (3.3) with Equations (3.1) and (3.2), we have that

n

ideal

(5)

f;(

~

S;I)

(x)j

J

~

S

(x)

o

c

�

n

real

~

�;(

~

A;I)

(x)j

J

~

A

(x)

o

It remains to show that the entire output distributions (including the honest parties not in J) are

computationally indistinguishable. However, this is immediate, because for every party P

i

for which

i 62 J , it holds that P

i

outputs ? (this is true for both the real and ideal executions). Therefore,

n

ideal

(5)

f;(

~

S;I)

(x)

o

c

�

n

real

~

�;(

~

A;I)

(x)

o

completing the proof of Lemma 3.4.4.

Recall that our aim is to show the security of the compiled protocol �

0

(and not

~

�). However,

intuitively, there is no di�erence between

~

� and �

0

. The reason is as follows: in

~

�, the adversary

can instruct any honest party P

i

to halt by sending it ? in a blank round. On the other hand,

in �

0

, the same e�ect can be achieved by having the \broadcast with abort" terminate with P

i

receiving ?. Therefore, whatever an adversary attacking �

0

can achieve, an adversary attacking

~

�

can also achieve. Formally:
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Lemma 3.4.5 Let � be a protocol in the broadcast model that is information-theoretic or computa-

tional t-secure with unanimous abort and with any level of fairness, and let

~

� be the transformation

of � as described in Lemma 3:4:4. Then, for every real-model adversary A

0

for �

0

of Construction 1,

there exists a real-model adversary

~

A for

~

�, such that for every I � [n] with jIj < t,

n

real

~

�;(

~

A;I)

(x)

o

�

n

real

�

0

;(A

0

;I)

(x)

o

Proof: We begin by describing the adversary

~

A. Intuitively,

~

A works by simulating the executions

of broadcast with abort for A

0

. If a party receives ? in �

0

(in a broadcast with abort execution

or in a blank round), then

~

A sends the appropriate ? messages in a blank round of

~

�. This

strategy works because in �

0

, there is no di�erence if a party receives ? in a broadcast with abort

execution or in the following blank round. Formally, adversary

~

A invokes A

0

and in every round of

the execution of

~

� works as follows:

1. Receiving messages in rounds r; r + 1:

~

A receives the broadcast and point-to-point messages

from the honest parties in

~

�. For every message broadcast by an honest party,

~

A simulates

a \broadcast with abort" execution, playing the honest parties' roles (where A

0

plays the

corrupted parties' roles). In addition,

~

A forwards any point-to-point messages unchanged to

A

0

.

2. Sending messages in round r; r+1:

~

A plays the honest parties' roles in \broadcast with abort"

executions, in which A

0

broadcasts messages to the honest parties. Consider a particular

execution in which a corrupted party P plays the dealer. If all the honest parties receive ?

in this execution, then

~

A broadcasts nothing in

~

�. On the other hand, if at least one honest

party outputs a message m, then

~

A broadcasts m. As before, point-to-point messages are

forwarded unchanged.

3. Blank round following round r+1: Let P denote the set of honest parties receiving ? in any

of the above simulated \broadcast with abort" executions (i.e., for the broadcast of rounds r

and r + 1). Then, for every P

i

2 P, adversary

~

A sends ? to P

i

in this blank round.

At the conclusion of the execution,

~

A outputs whatever A

0

does. This completes the description

of

~

A. The fact that

~

A perfectly simulates an execution of �

0

with A

0

follows directly from the

de�nition of �

0

. That is, the only di�erence between

~

� and �

0

is that in �

0

the broadcast channel

is replaced by broadcast with abort. This means that some parties may receive ? instead of the

broadcasted message. However, in this case,

~

A knows exactly who these parties are and can send

them ? in the following blank round. The key point is that in �

0

it makes no di�erence if ? is

received in a broadcast with abort execution or in the following blank round. We conclude that

the outputs of all the honest parties and

~

A in

~

�, are identically distributed to the outputs of the

honest parties and A

0

in �

0

.

Concluding the proof of Theorem 3.4.1: LetA

0

be an adversary attacking �

0

. By Lemma 3.4.5,

we have that there exists an adversary

~

A attacking

~

� such that the output distributions of �

0

with

A

0

, and

~

� with

~

A are identical. Then, by Lemma 3.4.4, we have that for real-model adversary

~

A

for

~

�, there exists an ideal-model simulator

~

S such that the output distributions of a real execution

with

~

A and an ideal execution (with abort and no fairness) with

~

S are computationally indistin-

guishable (or statistically close). We conclude that the output distribution of a real execution of �

0
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with adversary A

0

is computationally indistinguishable (or statistically close) to an ideal execution

(with abort and no fairness) with

~

S. That is, �

0

is t-secure with abort and no fairness, as required.

The complexity of protocol �

0

: We remark that the transformation of � to �

0

preserves the

round complexity of �. In particular, the number of rounds in �

0

equals exactly 3 times the number

of rounds in �. On the other hand, the bandwidth of �

0

is the same as that of � except for the cost

incurred in simulating the broadcast channel. Notice that in the \broadcast with abort" protocol,

if a dealer sends a k-bit message, then the total bandwidth equals n � k. (If the dealer cheats and

sends di�erent messages, then the bandwidth is upper-bound by the length of the longest message

times n.) Therefore, the number of bits sent in an execution of �

0

is only n times that sent in an

execution of �.

3.5 Secure Computation with Abort and Partial Fairness

In this section we show that for any functionality f , there exists a protocol for the computational

t-secure computation of f with abort and partial fairness, for any t. (This construction assumes the

existence of trapdoor permutations.) Furthermore, for any functionality f , there exists a protocol

for information-theoretic n=2-secure computation of f with abort and partial fairness (and without

any complexity assumptions).

Outline: We begin by motivating why the strategy used to obtain secure computation with abort

and no fairness is not enough here. The problem lies in the fact that due to the use of a \broadcast

with abort" protocol (and not a real broadcast channel), the adversary can disrupt communication

between honest parties. That is, of course, unless this communication need not be broadcast. Now,

in the de�nition of security with abort and partial fairness, once an honest P

1

receives its output,

it must be able to give this output to all honest parties. That is, the adversary must not be allowed

to disrupt the communication, following the time that an honest P

1

receives its output. This means

that using a \broadcast with abort" protocol in the �nal stage where the remaining parties receive

their outputs is problematic.

We solve this problem here by having the parties compute a di�erent functionality. This func-

tionality is such that when P

1

gets its output, it can supply all the other parties with their output

directly and without broadcast. On the other hand, P

1

itself should learn nothing of the other

parties' outputs. As a �rst attempt, consider what happens if instead of computing the original

functionality f , the parties �rst compute the following:

First attempt:

Inputs: x = (x

1

; : : : ; x

n

)

Outputs:

� Party P

1

receives its own output f

1

(x). In addition, for every i > 1, it receives

c

i

= f

i

(x)� r

i

for a uniformly distributed r

i

.

� For every i > 1, party P

i

receives the string r

i

.

That is, for each i > 1, party P

i

receives a random pad r

i

and P

1

receives an encryption of f

i

(x)

with that random pad. Now, assume that the parties use a protocol that is secure with abort and no
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fairness in order to compute this new functionality. Then, there are two possible outcomes to such

a protocol execution: either all parties receive their prescribed output, or at least one honest party

receives ?. In the case that at least one honest party receives ?, this party can notify P

1

who can

then immediately halt. The result is that no parties, including the corrupted ones, receive output

(if P

1

does not send the c

i

values, then the parties only obtain r

i

which contains no information

on f

i

(x)). In contrast, if all parties received their prescribed output, then party P

1

can send each

party P

i

its encryption c

i

, allowing it to reconstruct its output f

i

(x). The key point is that the

adversary is unable to prevent P

1

from sending these c

i

values and no broadcast is needed in this

last step. Of course, if P

1

is corrupted, then it will learn all the corrupted parties' outputs �rst.

However, under the de�nition of partial fairness, this is allowed.

The aw in the above strategy arises in the case that P

1

is corrupted. Speci�cally, a corrupted

P

1

can send the honest parties modi�ed values, causing them to conclude with incorrect outputs.

This is in contradiction to what is required of all secure protocols. Therefore, we modify the

functionality that is computed so that a corrupted P

1

is unable to cheat. In particular, the aim is

to prevent the adversary from modifying c

i

= f

i

(x)� r

i

without P

i

detecting this modi�cation. If

the adversary can be restrained in this way, then it can choose not to deliver an output; however,

any output delivered is guaranteed to be correct. The above-described aim can be achieved using

standard (information-theoretic) authentication techniques, based on pairwise independent hash

functions. That is, let H be a family of pairwise independent hash functions h : f0; 1g

k

! f0; 1g

k

.

Then, the functionality that the parties compute is as follows:

Functionality F :

Inputs: x = (x

1

; : : : ; x

n

)

Outputs:

� Party P

1

receives its own output f

1

(x). In addition, for every i > 1, it receives

c

i

= f

i

(x)� r

i

for a uniformly distributed r

i

, and a

i

= h

i

(c

i

) for h

i

2

R

H.

� For every i > 1, party P

i

receives the string r

i

and the description of the hash

function h

i

.

Notice that as in the �rst attempt, P

1

learns nothing of the output of any honest P

i

(since f

i

(x)

is encrypted with a random pad). Furthermore, if P

1

attempts to modify c

i

to c

0

i

in any way, then

the probability that it will generate the correct authentication value a

0

i

= h

i

(c

0

i

) is at most 2

�k

(by

the pairwise independent properties of h

i

). Thus, the only thing a corrupt P

1

can do is refuse to

deliver the output. The protocol for computing f , as motivated here, appears in Figure 3.2.

We now proceed to show that Protocol 3.2 achieves security with abort and partial fairness.

Theorem 3.5.1 (Theorem 3.1.2 { restated): For any probabilistic polynomial-time n-ary function-

ality f , there exists a protocol in the point-to-point model for the computational t-secure computation

of f with abort and partial fairness, for any t. Furthermore, there exists a protocol in the point-

to-point model for the information-theoretic n=2-secure computation of f with abort and partial

fairness.

Proof: The protocol referred to in the theorem statement is that of Protocol 3.2, where the

subprotocol used for Stage 1 is computationally t-secure (for the �rst part of the theorem) or

9

By Corollaries 3.4.2 and 3.4.3 in Section 3.4, such protocols exist for any t assuming the existence of trapdoor

permutations. Furthermore, for the case of t > n=2, no assumptions are required.
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Protocol 3.2

The parties execute the following three steps:

1. Stage 1 { computation: The parties use any protocol for secure (computational or information-

theoretic) computation with abort and no fairness in order to compute the functionality F

de�ned above.

9

Thus, P

1

receives f

1

(x) and a pair (c

i

; a

i

) for every i > 1, and each P

i

(i > 1)

receives (r

i

; h

i

) such that c

i

= f

i

(x)� r

i

and a

i

= h

i

(c

i

).

2. Stage 2 { blank round: After the above protocol concludes, a blank-round is added so that if

any party receives ? for its output from Stage 1, then it sends ? to P

1

in this blank round.

3. Stage 3 { outputs: If P

1

received any ?-messages in the blank round, then it sends ? to

all parties and halts outputting ?. Otherwise, for every i, it sends (c

i

; a

i

) to P

i

and halts,

outputting f

1

(x).

Party P

i

outputs ? if it received ? from P

1

(it ignores any ? it may receive from other

parties). If it received (c

i

; a

i

) from P

1

(and not ?), then it checks that a

i

= h

i

(c

i

). If yes, it

outputs f

i

(x) = c

i

� r

i

. Otherwise, it outputs ?.

Figure 3.2: A protocol for secure computation with abort and partial fairness for any f

information-theoretically n=2-secure (for the second part of the theorem). Intuitively, the security

of Protocol 3.2 is derived from the fact that Stage 1 is run using a protocol that is secure with

abort (even though it has no fairness property). Consider the two cases regarding whether or not

P

1

is corrupted:

1. P

1

is corrupt: in this case, A receives all the outputs of the corrupted parties �rst. Fur-

thermore, A can decide exactly which parties to give output to and which not. However,

this is allowed in the setting of secure computation with abort and partial fairness, and so is

�ne. We stress that A cannot cause an honest party to output any value apart from ? or its

correct output. This is because the authentication properties of pairwise independent hash

functions guarantee that A does not modify c

i

, and the correctness of the protocol of Stage 1

guarantees that c

i

� r

i

equals the correct output f

i

(x).

2. P

1

is honest: there are two possible cases here; either some honest party received ? in the

computation of Stage 1 or all honest parties received their correct outputs. If some honest

party received ?, then this party sends ? to P

1

in Stage 2 and thus no parties (including the

corrupted parties) receive output. (Similarly, if A sends ? to P

1

in Stage 2 then no parties

receive output.) On the other hand, if all honest parties received their outputs and A does

not send ? to P

1

in Stage 2, then all parties receive outputs and the adversary cannot cause

any honest party to abort. We therefore have that in this case complete fairness is achieved,

as required.

In order to formally prove the security of the protocol, we use the sequential composition theorem of

Canetti [13]. This theorem states that we can consider a hybrid model in which an ideal call is used

for Stage 1 of the protocol, whereas the other stages are as described above. That is, the parties

all interact with a trusted party for the computation of Stage 1 (where the ideal model for this

computation is that of secure computation with abort and no fairness). Then, Stages 2 and 3 take

place as in a real execution. The result is a protocol that is a hybrid of real and ideal executions. In

order to prove the security of the (real) protocol, it su�ces to construct an ideal-model simulator
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for the hybrid protocol. Thus, the description of the parties and adversary below relate to this

hybrid model (the parties send messages to each other, as in a real execution, and to a trusted

party, as in an ideal execution). The proof of [13] is stated for secure computation without abort

(and complete fairness); however it holds also for secure computation with abort and no fairness.

Let A be an adversary attacking Protocol 3.2 in the above-described hybrid model. Notice that

in the ideal call of Stage 1, A receives all the corrupted parties' outputs �rst and then decides which

honest parties receive output (this is because there is no fairness in the computation of Stage 1).

We now construct an ideal-model adversary S who works in an ideal model with abort and partial

fairness. We stress that A works in a hybrid model in which the \ideal model" part has no fairness;

whereas, S works in an ideal model with partial fairness. S has external communication with the

trusted party of its ideal model and internal, simulated communication with the adversary A. In

our description of S, we di�erentiate between the cases that P

1

is corrupt and P

1

is honest:

1. P

1

is corrupt: S invokes A and receives the inputs that A intends to send to the trusted party

of the hybrid model. Then, S externally sends these inputs unmodi�ed to the trusted party

of its ideal model for computing f . If the inputs are not valid, then in the hybrid model all

parties receive ? as output. Therefore, S internally hands ? to A as its output from Stage 1

and simulates all honest parties sending ? in Stage 2 (as would occur in a hybrid execution).

S then halts, outputting whatever A does. Otherwise, if the inputs are valid, S receives all

the corrupted parties outputs ff

i

(x)g

i2I

(this is the case because S controls P

1

and by partial

fairness, when P

1

is corrupt the adversary receives the corrupted parties' outputs �rst). S

then constructs the corrupted parties' outputs from Stage 1 that A expects to see in the

hybrid execution. S de�nes P

1

's output as follows: First, P

1

's personal output is f

1

(x). Next,

for every corrupted party P

i

, party P

1

's output contains the pair (c

i

= f

i

(x) � r

i

; h

i

(c

i

)) for

r

i

2

R

f0; 1g

k

and h

i

2

R

H. Finally, for every honest party P

j

, party P

1

's output contains

a pair (c

j

; a

j

) where c

j

; a

j

2

R

f0; 1g

k

. This de�nes P

1

's output. We now de�ne how S

constructs the other corrupted parties' outputs: for every corrupted P

i

, simulator S de�nes

P

i

's output to equal (r

i

; h

i

) where these are the values used in preparing the corresponding

pair (c

i

; h

i

(c

i

)) in P

1

's output. (We note that S can prepare these values because it knows

f

i

(x) for every corrupted party P

i

.) S then internally passes A all of these outputs. In the

hybrid model, after receiving the outputs from Stage 1, A sends a set J

0

to the trusted party

instructing it to give outputs to the parties speci�ed in this set (all other parties receive ?).

S obtains this set J

0

from A and records it.

S continues by simulating P

l

sending ? to P

1

in the blank round, for every honest party P

l

for

which l 62 J

0

(as would occur in a hybrid execution). Then, in the last stage, A (controlling

P

1

) sends to each honest party P

j

a pair (c

0

j

; a

0

j

) or ?. S receives these strings and de�nes

the set of parties J to receive outputs to equal those parties in J

0

to whom A sends the same

(c

j

; a

j

) that S gave A in Stage 1. (These are the parties who do not see ? in the execution

and whose checks of Stage 3 succeed; they therefore do not abort.) S concludes by externally

sending J to the ideal-model trusted party and outputting whatever A does.

2. P

1

is honest: In this case, S begins in the same way. That is, S invokes A and receives the

inputs that A intends to send the trusted party of the hybrid model. However, unlike in the

previous case, S does not forward these inputs to its trusted party; rather it just records

them.

10

(If any of these inputs are invalid, then S internally sends ? to all corrupted parties,

10

S cannot forward the inputs to the trusted party yet, because in the model of partial fairness as soon as it does

this all parties receive output. However, in the execution of Protocol 3.2, A can cause the execution to abort at a

later stage.
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externally sends invalid inputs to the trusted party and halts. In the sequel, we assume that

all inputs sent by A are valid.) Now, A expects to receive outputs from Stage 1 before it

sends the trusted party the set J

0

of honest parties receive output from Stage 1. However,

S does not have the corrupted parties' outputs yet. Fortunately, when P

1

is honest, S can

perfectly simulate the corrupted parties outputs from Stage 1 by merely providing them with

(r

i

; h

i

) where r

i

2

R

f0; 1g

k

and h

i

2

R

H. After internally passing A the simulated corrupted

parties' outputs, S obtains a set J

0

from A, instructing the trusted party of the hybrid model

which parties should receive output.

S continues by simulating Stages 2 and 3 of the protocol. As above, S simulates every honest

party P

l

for which l 62 J

0

sending ? to P

1

in Stage 2. Furthermore, S obtains any messages

sent by A in this stage. If A sends ? to P

1

in Stage 2, then S simulates P

1

sending ? to all

parties, sends invalid inputs to the trusted party and halts. Likewise, if J

0

does not contain

all the honest parties, then S internally simulates P

1

sending ? to all the corrupted parties,

and externally sends invalid inputs to the trusted party. (These cases correspond to the case

that no parties receive their prescribed output.)

In contrast, if J

0

contains all the honest parties (i.e., no honest party received ? from Stage 1)

and A did not send ? to P

1

in Stage 2 of the simulation, then S externally sends the trusted

party the inputs that it recorded from A above, receiving back all of the corrupted parties

outputs ff

i

(x)g

i2I

. Then, for each corrupted party's output f

i

(x), simulator S generates

the pair that corrupted P

i

would see in a hybrid execution. In particular, previously in the

simulation S provided P

i

with a pair (r

i

; h

i

) where r

i

2

R

f0; 1g

k

and h

i

2

R

H. Now, S

simulates P

1

sending corrupted party P

i

the pair (c

i

; a

i

) where c

i

= f

i

(x)� r

i

and a

i

= h

i

(c

i

).

(S can do this because it knows the random-pad r

i

and the hash function h

i

.) Finally, S

outputs whatever A does and halts.

The fact that the global output in the hybrid execution with S is identically distributed to the

global output in a real execution with A is derived from the following observations. First, A's

outputs from Stage 1 can be perfectly simulated, both when P

1

is corrupt and when P

1

is honest.

Second, the honest parties' messages in Stage 2 can be perfectly simulated given only the set J

0

sent by A to the hybrid-model trusted party in the ideal execution of Stage 1. Therefore, A's view

in the hybrid-model execution is identical to its view in a real execution. It remains to show that

the honest parties' outputs are also correctly distributed.

First, consider the case that P

1

is corrupt. In this case, with overwhelming probability, the

set of honest parties receiving output in the real model are exactly those parties P

j

for whom

P

1

(controlled by A) sends the exact pair (c

j

; a

j

) that it received as output from Stage 1 (and

who did not see ? at any time in the execution). This is due to the authentication properties of

pairwise independent hash functions. Likewise, in the ideal-model simulation, S designates these

same parties to be the ones receiving output. Therefore, except with negligible probability, the set

J sent by S to the trusted party contains exactly those parties who would receive output in a real

execution.

Next, consider the case that P

1

is honest. In this case, all parties receive output unless P

1

sees

? in Stage 2. This can happen if A sends P

1

such a value, or if any honest party received ? from

Stage 1. Both of these cases are detected by S in the hybrid-model simulation, and therefore the

case that all parties abort in the hybrid model corresponds to this case in the real model (and

likewise for the case that all parties receive output). This completes the proof of Theorem 3.5.1



Chapter 4

Universally Composable Multi-Party

Computation

In this chapter we prove a fundamental result stating that secure multi-party computation that

remains secure under concurrent general-composition can be achieved, for any number of corrupted

parties. That is, we consider an asynchronous multi-party network and an adversary that can

adaptively corrupt as many parties as it wishes. We present protocols that allow any subset of

parties in this setting to securely realize any desired functionality of their inputs, and be guaranteed

that security is preserved regardless of the activity in the rest of the network. Our protocols are in

the common reference string model and rely on standard intractability assumptions.

4.1 Introduction

As we have seen, the model of \stand-alone computation" does not fully capture the security re-

quirements from cryptographic protocols in a modern computer network. In such networks, a

protocol execution may run concurrently with an unknown number of other protocols. These ar-

bitrary protocols may be executed by the same parties or other parties, they may have potentially

related inputs and the scheduling of message delivery may be adversarially coordinated. Further-

more, the local outputs of a protocol execution may be used by other protocols in an unpredictable

way. These concerns, or \attacks" on a protocol are not captured by the stand-alone model.

One way to guarantee that protocols withstand some speci�c security threats in multi-execution

environments is to explicitly incorporate these threats into the security model and analysis. Such

an approach was taken, for instance, in the case of non-malleability of protocols [32], and regarding

the concurrent composition of zero-knowledge [33, 77] and oblivious transfer [43]. However, this

approach is inherently limited since it needs to explicitly address each new concern, whereas in a

realistic network setting, the threats may be unpredictable. Furthermore, it inevitably results in

de�nitions with ever-growing complexity.

In contrast, we take the approach where a protocol is designed and analyzed as \stand alone",

and security in a multi-execution environment is guaranteed via a secure composition theorem. In

particular, we use the recently proposed framework of universally composable security [14]. Here

a generic de�nition is given for what it means for a protocol to \securely realize a given ideal

functionality", where an \ideal functionality" is a natural algorithmic way of capturing the desired

functionality of the protocol problem at hand. In addition, it is shown that security of protocols

is preserved under a general composition operation called universal composition. This essentially

49
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means that any protocol that securely realizes an ideal functionality when considered as stand-

alone, continues to securely realize the same functionality even when composed with any other set

of protocols that may be running concurrently in the same system. (In other words, the protocol

remains secure under concurrent general-composition.) A protocol that is secure within the [14]

framework is called universally composable (UC).

It has been shown that any ideal functionality can be securely realized in a universally compos-

able way using known constructions, as long as a majority of the participants remain uncorrupted

[14] (building upon [10, 76, 15]). However, this result does not hold when half or more of the parties

may be corrupted. In particular, it does not hold for the important case of two-party protocols,

where each party wishes to maintain its security even if the other party is corrupted. In fact, it was

shown in [16, 14] that in the standard model, a number of basic two-party functionalities (such as

commitment, zero-knowledge, and common coin-tossing) cannot be securely realized in this frame-

work by two-party protocols. Nonetheless, protocols that securely realize the commitment and

zero-knowledge functionalities in the common reference string (CRS) model were shown in [16, 26].

(In the CRS model all parties are given a common, public reference string that is ideally chosen

from a given distribution. This model was originally proposed in the context of non-interactive

zero-knowledge proofs [12] and since then has proved useful in other cases as well.)

Our results. Loosely speaking, we show that any functionality can be realized in a universally

composable way, in the CRS model, regardless of the number of corrupted parties. More speci�cally,

consider an asynchronous multi-party network where the communication is open and delivery of

messages is not guaranteed. (For simplicity, we assume that delivered messages are authenticated.

This can be achieved using standard methods.) The network contains an unspeci�ed number of

parties, and any number of these parties can be adaptively corrupted throughout the computation.

In this setting, we show how arbitrary subsets of parties can securely realize any functionality of

their inputs in a universally composable way. The functionality may be reactive, namely it may

receive inputs and generate outputs multiple times throughout the computation.

In addition to our general constructions for two-party and multi-party computation, we also

present a new adaptively secure UC commitment scheme in the CRS model, assuming only the

existence of trapdoor permutations. (UC commitment schemes are protocols that securely realize

the ideal commitment functionality [16]. Existing constructions of UC commitments [16, 25] rely

on speci�c cryptographic assumptions.) Since UC zero-knowledge can be obtained given a UC

commitment scheme [16], we can plug our new scheme into the UC zero-knowledge protocol of [16]

and thereby obtain an adaptively secure UC zero-knowledge protocol in the CRS model, for any NP

relation, and based on any trapdoor permutation. Beyond being interesting in its own right, we use

this commitment scheme in order to base our constructions on general cryptographic assumptions.

Adaptive security. Our protocol is the �rst general construction that guarantees security against

adaptive adversaries in the two-party case and in the case of multi-party protocols with honest

minority. (We note that no adaptively secure general construction was known in these cases even

in the traditional stand-alone model; all previous adaptively secure protocols for general multi-party

computation assumed an honest majority.) We remark that, in contrast to the case of stand-alone

protocols, in our setting adaptive security is a relevant concern even for protocols with only two

participants. Furthermore, it is important to protect even against adversaries that eventually break

into all the participants in an interaction. This is because we consider multiple interactions that

take place between di�erent sets of parties in the system. Therefore, all the participants in one

interaction may constitute a proper subset of the participants in another interaction. Our results
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hold even in a model where no data can ever be erased.

Cryptographic assumptions. Our protocols are based on the following cryptographic assump-

tions. For the non-adaptive case (both semi-honest and malicious) we assume the existence of trap-

door permutations only. For the adaptive case we additionally assume the existence of augmented

non-committing encryption protocols [15]. The augmentation includes oblivious key generation and

invertible samplability [24]. Loosely speaking, oblivious key generation states that public keys can

be generated without knowing the corresponding private keys, and invertible samplability states

that given a public/private key-pair it is possible to obtain the random coin tosses of the key gen-

erator when outputting this key-pair (the oblivious key generator should also be invertible). Such

encryption schemes are known to exist under the RSA and DDH assumptions.

As we have mentioned, our protocols are in the CRS model. The above assumptions su�ce if

we use a common reference string that is not uniformly distributed (but is rather taken from some

di�erent distribution). If a uniformly distributed common reference string is to be used, then we

additionally assume the existence of dense cryptosystems [27].

Related work. In a concurrent and independent work [25], Damgard and Nielsen consider a

functionality that has great resemblance to our commit-and-prove functionality, and construct

universally composable protocols that realize this functionality under speci�c number-theoretic

assumptions. Our commit-and-prove protocol is based on more general assumptions, whereas their

protocol is considerably more e�cient.

Organization. In Section 4.2 we provide an overview of the model of [14] and an outline of

our construction of UC two-party and multi-party protocols. Section 4.3 contains a number of

important preliminaries: First, in Section 4.3.1, a more detailed description of the [14] framework

and of the composition theorem itself is presented. Then, in Section 4.3.2, the issue of universal

composition and joint state is discussed (this is important where a common reference string is used,

as is the case in our constructions). Finally, in Section 4.6, the ideal zero-knowledge functionality

is described. Our new UC commitment scheme is presented in Section 4.5.

We then begin our presentation of constructions for UC two-party and multi-party computation.

That is, in Section 4.4, we show how to obtain UC two-party secure computation in the presence

of semi-honest adversaries. Next we proceed to the case of malicious adversaries. That is, in

Section 4.7 we de�ne and realize the two-party commit-and-prove functionality. This is then used

in Section 4.8 to construct a two-party protocol compiler that is used to transform the protocol

of Section 4.4 into a protocol that is secure against malicious adversaries. Finally, in Section 4.9,

we extend our two-party constructions to the multi-party case. We present the two-party case

separately because most of the cryptographic ideas already arise in this setting.

4.2 Overview

This section provides a high-level overview of the model and our constructions. Section 4.2.1

contains an overview of the general framework of universal composability, the de�nition of security

and the composition theorem. Then, in Section 4.2.2 we provide a brief outline of our constructions

for two-party and multi-party computation. The aim of this outline is to provide the reader with

the \big picture", before delving into details.
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4.2.1 The model

We begin by outlining the framework for universal composability; for more details see Section 4.3.1

and [14]. The framework provides a rigorous method for de�ning the security of cryptographic

tasks, while ensuring that security is maintained under a general composition operation in which a

secure protocol for the task in question is run in a system concurrently with an unbounded number

of other arbitrary protocols. This composition operation is called universal composition, and tasks

that ful�ll the de�nitions of security in this framework are called universally composable (UC).

As in other general de�nitions (e.g., [53, 69, 5, 73, 13]), the security requirements of a given

task (i.e., the functionality expected from a protocol that carries out the task) are captured via a

set of instructions for a \trusted party" that obtains the inputs of the participants and provides

them with the desired outputs (in one or more iterations). We call the algorithm run by the trusted

party an ideal functionality. Informally, a protocol securely carries out a given task if any adversary

can gain nothing more from an attack on a real execution of the protocol, than from an attack on

an ideal process where the parties merely hand their inputs to a trusted party with the appropriate

functionality and obtain their outputs from it, without any other interaction. In other words, we

require that a real execution can be emulated in the above ideal process (where the meaning of

emulation is described below). We stress that in a real execution of the protocol, no trusted party

exists and the parties interact amongst themselves only.

In order to prove the universal composition theorem, the notion of emulation in this framework

is considerably stronger than in previous ones. Traditionally, the model of computation includes

the parties running the protocol, plus an adversary A that controls the communication channels

and potentially corrupts parties. Emulation means that for any adversary A attacking a real

protocol execution, there should exist an \ideal process adversary" or simulator S, that causes the

outputs of the parties in the ideal process to be essentially the same as the outputs of the parties in a

real execution. In the universally composable framework, an additional adversarial entity called the

environment Z is introduced. This environment generates the inputs to all parties, reads all outputs,

and in addition interacts with the adversary in an arbitrary way throughout the computation. (As

is hinted by its name, Z represents the external environment that consists of arbitrary protocol

executions that may be running concurrently with the given protocol.) A protocol is said to securely

realize a given ideal functionality F if for any \real-life" adversary A that interacts with the protocol

there exists an \ideal-process adversary" S, such that no environment Z can tell whether it is

interacting with A and parties running the protocol, or with S and parties that interact with F in

the ideal process. (In a sense, here Z serves as an \interactive distinguisher" between a run of the

protocol and the ideal process with access to F . See [14] for more motivating discussion on the role

of the environment.) Note that the de�nition requires the \ideal-process adversary" (or simulator)

S to interact with Z throughout the computation. Furthermore, Z cannot be \rewound".

The following universal composition theorem is proven in [14]: Consider a protocol � that

operates in a hybrid model of computation where parties can communicate as usual, and in addition

have ideal access to an unbounded number of copies of some ideal functionality F . (This model is

called the F-hybrid model.) Furthermore, let � be a protocol that securely realizes F as sketched

above, and let �

�

be the \composed protocol". That is, �

�

is identical to � with the exception

that each interaction with the ideal functionality F is replaced with a call to (or an activation of)

an appropriate instance of the protocol �. Similarly, �-outputs are treated as values provided by

the functionality F . The theorem states that in such a case, � and �

�

have essentially the same

input/output behavior. Thus, � behaves just like the ideal functionality F , even when composed

with an arbitrary protocol �. A special case of this theorem states that if � securely realizes some
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ideal functionality G in the F-hybrid model, then �

�

securely realizes G from scratch.

We consider a network where the adversary sees all the messages sent, and delivers or blocks

these messages at will. (The fact that message delivery is not guaranteed frees us from the need to

explicitly deal with the \early stopping" problem of protocols run between two parties or amongst

many parties where only a minority may be honest. This is because even the ideal process allows

the adversary to abort the execution at any time.) We note that although the adversary may

block messages, it cannot modify messages sent by honest parties (i.e., the communication lines

are ideally authenticated). Our protocols are cast in a completely asynchronous point-to-point

network (and thus the adversary has full control over when messages are delivered, if at all). Also,

as usual, the adversary is allowed to corrupt parties. In the case of static adversaries the set of

corrupted parties is �xed at the onset of the computation. In the adaptive case the adversary

corrupts parties at will throughout the computation. We also distinguish between malicious and

semi-honest adversaries: If the adversary is malicious then corrupted parties follow the arbitrary

instructions of the adversary. In the semi-honest case, even corrupted parties follow the prescribed

protocol and the adversary essentially only gets read access to the states of corrupted parties.

4.2.2 An outline of the results and techniques

In this section we provide a high-level description of our protocols for two-party and multi-party

computation, and the techniques used in obtaining them. Our construction is conceptually very

similar to the construction of Goldreich, Micali and Wigderson [52, 44]. This construction (which

we call the GMW construction) is comprised of two stages. First, they present a protocol for

securely realizing any functionality in the semi-honest adversarial model. Next, they construct a

protocol compiler that takes any semi-honest protocol and transforms it into a protocol that has the

same functionality in the malicious adversarial model. (However, as discussed above, they consider

a model where only a single protocol execution takes place in the system. In contrast, we construct

protocols for universally composable secure computation.) We begin by considering the two-party

case.

Two-party computation in the case of semi-honest adversaries

Recall that in the case of semi-honest adversaries, even the corrupted parties follow the protocol

speci�cation. However, the adversary may attempt to learn more information than intended by

examining the transcript of messages that it received during the protocol execution. Despite the

seemingly weak nature of the adversarial model, obtaining protocols secure against semi-honest

adversaries is a non-trivial task.

We begin by briey recalling the [52, 44] construction for secure two-party computation in the

semi-honest adversarial model. Let f be the two-party functionality that is to be securely computed.

Then, the parties are given an arithmetic circuit over GF (2) that computes the function f . The

protocol starts with the parties sharing their inputs with each other using bitwise-xor secret sharing,

and thus following this stage, they both hold shares of the input lines of the circuit. That is, for

each input line l, party A holds a value a

l

and party B holds a value b

l

, such that both a

l

and b

l

are random under the constraint that a

l

+ b

l

equals the value of the input into this line. Next, the

parties evaluate the circuit gate-by-gate, computing random shares of the output line of the gate

from the random shares of the input lines to the gate. There are two types of gates in the circuit:

addition gates and multiplication gates. Addition gates are evaluated by each party locally adding

its shares of the input values. Multiplication gates are evaluated using 1-out-of-4 oblivious transfer

(the oblivious transfer protocol used is basically that of [35]). In the above way, the parties jointly
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compute the circuit and obtain shares of the output gates. The protocol concludes with each party

revealing the prescribed shares to the other party (i.e, if a certain output gate provides a bit of A's

input, then B will reveal its share of this output line to A).

Our general construction is exactly that of GMW, except that the oblivious transfer protocol

used is universally composable. That is, we �rst de�ne an ideal oblivious transfer functionality,

F

ot

, and show that in the F

ot

-hybrid model, the GMW protocol securely realizes any two-party

functionality in the presence of semi-honest, adaptive adversaries. This holds unconditionally and

even if the adversary and environment are computationally unbounded. Of course, computational

assumptions are used for securely realizing F

ot

itself. (Our construction is actually somewhat more

general than that of GMW in that it deals with reactive functionalities that have multiple stages

which are separately activated. This is achieved by having the parties hold shares of the state of

the ideal functionality between activations.)

Next we present protocols that securely realize F

ot

in the semi-honest case. In the non-adaptive

case, the protocol of [35, 44] su�ces. In the adaptive case, our protocol uses an augmented version of

non-committing encryption [15]. The augmentation consists of two additional properties. First, the

encryption scheme should have an alternative key generation algorithm that generates only public

encryption keys without the corresponding decryption key. Second, the standard and additional

key generation algorithms should be invertible in the sense that given the output key or keys, it

is possible to �nd the random coin tosses used in generating these keys. (Following [24], we call

these properties oblivious key generation and invertible samplability.) All known non-committing

encryption schemes have this properties. In particular, such schemes exist under either the RSA

assumption or the DDH assumption.) In all, we show:

Proposition 4.2.1 (semi-honest computation { informal): Assume that trapdoor permutations

exist. Then, for any two-party ideal functionality F , there exists a protocol � that securely realizes

F in the presence of semi-honest, static adversaries. Furthermore, if augmented two-party non-

committing encryption protocols exist, then there exists a protocol � that securely realizes F in the

presence of semi-honest, adaptive adversaries.

Proposition 4.2.1 as stated above is not precise. This is due to two technicalities regarding the

model of computation as de�ned in [14]. We therefore de�ne a class of functionalities for which

these technical problems do not arise and then construct secure protocols for any functionality in

this class. See Section 4.3.3 for more discussion and an exact de�nition.

Another point where our results formally di�er from Proposition 4.2.1 is due to the fact that,

according to the de�nitions used here, protocols which do not generate any output are technically

secure (for any functionality). Thus, Proposition 4.2.1 as stated, can be easily (but un-interestingly)

achieved. In contrast, we prove the existence of protocols which do generate output and securely

realize any functionality (we call such a protocol non-trivial; for more details, see the discussion

after De�nition 4.3.2 in Section 4.3.1). Proposition 4.2.1 is formally restated in Section 4.4.2.

Obtaining two-party computation secure against malicious adversaries

Having constructed a protocol that is universally composable when the adversary is limited to

semi-honest behavior, we construct a protocol compiler that transforms this protocol into one that

is secure even against malicious adversaries. From here on, we refer to the protocol that is secure

against semi-honest adversaries as the \basic protocol". Recall that the basic protocol is only

secure in the case that even the corrupted parties follow the protocol speci�cation exactly, using

a uniformly chosen random tape. Thus, in order to obtain a protocol secure against malicious
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adversaries, we need to enforce potentially malicious corrupted parties to behave in a semi-honest

manner. First and foremost, this involves forcing the parties to follow the prescribed protocol.

However, this only makes sense relative to a given input and random tape. Furthermore, a malicious

party must be forced into using a uniformly chosen random tape. This is because the security of the

basic protocol may depend on the fact that the party has no freedom in setting its own randomness.

We begin with a description of the GMW compiler.

An informal description of the GMW compiler. The GMW compiler begins by having each

party commit to its input. Next, the parties run a coin-tossing protocol in order to �x their random

tapes. A simple coin-tossing protocol in which both parties receive the same uniformly distributed

string is not su�cient here. This is because the parties' random tapes must remain secret. Instead,

an augmented coin-tossing protocol is used, where one party receives a uniformly distributed string

(to be used as its random tape) and the other party receives a commitment to that string. Now,

following these two steps, each party holds its own input and uniformly distributed random tape,

and a commitment to the other party's input and random tape.

Next, the commitments to the random tape and to the inputs are used to \enforce" semi-

honest behavior. Observe that a protocol speci�cation is a deterministic function of a party's view

consisting of its input, random tape and messages received so far, and recall that each party holds

a commitment to the input and random tape of the other party. Observe also that the messages

sent so far are public. Therefore, the assertion that a new message is computed according to the

protocol is an NP statement (and the party sending the message knows an adequate NP-witness

to it). This means that the parties can use zero-knowledge proofs to show that their steps are

indeed according to the protocol speci�cation. Therefore, in the protocol emulation phase, the

parties send messages according to the instructions of the basic protocol, while proving at each

step that the messages sent are correct. The key point is that, due to the soundness of the proofs,

even a malicious adversary cannot deviate from the protocol speci�cation without being detected.

Therefore, the adversary is limited to semi-honest behavior. Furthermore, since the proofs are

zero-knowledge, nothing \more" is revealed in the compiled protocol than in the basic protocol.

We conclude that the security of the compiled protocol (against malicious adversaries) is directly

derived from the security of the basic protocol (against semi-honest adversaries).

In summary, the GMW compiler has three components: input commitment, coin-tossing and

protocol emulation (where the parties prove that their steps are according to the protocol speci�-

cation).

Universally composable protocol compilation. A natural way of adapting the GMW com-

piler to the setting of universally composable secure computation would be to take the same

compiler, but rather use universally composable commitments, coin-tossing and zero-knowledge

as sub-protocols. However, such a strategy fails because the receiver of a universally composable

commitment receives no information about the value committed to. (Instead, the recipient receives

only a formal \receipt" assuring it that a value was committed to. See Section 4.5 for more details.)

Thus, there is no NP-statement that a party can prove relative to its input commitment. This is

in contrast to the GMW protocol where standard (perfectly binding) commitments are used and

thus each party holds a string that uniquely determines the other party's input and random tape.

A di�erent strategy is therefore required for constructing a universally composable compiler.

Before describing our strategy, observe that in GMW the use of the commitment scheme is not

standard. Speci�cally, although both parties commit to their inputs etc., they never decommit.

Rather, they prove NP-statements relative to their committed values. Thus, a natural primitive
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to use would be a \commit-and-prove" functionality, which is comprised of two phases. In the

�rst phase, a party \commits" (or is bound) to a speci�c value. In the second phase, this party

proves NP-statements (in zero-knowledge) relative to the committed value. We formulate this

notion in a universally composable commit-and-prove functionality, denoted F

cp

, and then use

this functionality to implement all three phases of the compiler. More speci�cally, our protocol

compiler uses the \commit" phase of the F

cp

functionality in order to execute the input and coin-

tossing phases of the compiler. The \prove" phase of the F

cp

functionality is then used to force

the adversary to send messages according to the protocol speci�cation and consistent with the

committed input and the random tape resulting from the coin-tossing. The result is a universally

composable analog to the GMW compiler. We remark that in the F

cp

-hybrid model the compiler

is unconditionally secure against adaptive adversaries, even if the adversary and the environment

are computationally unbounded.

We show how to securely realize F

cp

in the F

zk

-hybrid model, i.e. in a hybrid model with

ideal access to an ideal zero-knowledge functionality, F

zk

. (Functionality F

zk

expects to receive a

statement x and a witness w from the prover. It then forwards x to the veri�er, together with an

assertion whether R(x;w) holds, where R is a predetermined relation.) Essentially, in the commit

phase of the commit-and-prove protocol, the committer commits to its input value w using some

commitment scheme C, and in addition it proves to the receiver, using F

zk

with an appropriate

relation, that it \knows" the committed value. In the prove phase, where the committer wishes to

assert that the committed value w stands in relation R with some public value x, the committer

presents x and w to F

zk

again | but this time the relation used by F

zk

asserts two properties:

�rst that R(x;w) holds, and second that w is the same value that was previously committed to.

To guarantee security against static adversaries, the commitment scheme of Naor [70] is su�cient

as an instantiation of the scheme C. We thus obtain a protocol for securely realizing F

cp

in the F

zk

-

hybrid model, based on any one-way function. To guarantee security against adaptive adversaries

we need \adaptively secure" commitment schemes, namely commitment schemes where a simulator

can generate \dummy commitments" which can be later opened in multiple ways. (In fact, a

slightly stronger property is needed here, see details within.) Such commitments exist assuming

the existence of trapdoor permutations, as is demonstrated by our construction of universally

composable commitments in Section 4.5. In all we obtain:

Theorem 4.2.2 (two-party computation in the malicious model { informal): Assume that trap-

door permutations exist. Then, for any two-party ideal functionality F , there exists a protocol �

that securely realizes F in the F

zk

-hybrid model in the presence of malicious, static adversaries.

Furthermore, if augmented two-party non-committing encryption protocols exist, then there exists a

protocol � that securely realizes F in the F

zk

-hybrid model in the presence of malicious, adaptive

adversaries.

Let F

crs

denote the common random string functionality (that is, F

crs

provides all parties with

a common, public string drawn from a prede�ned distribution). Then, as we show in Section 4.5,

universally composable commitments can be securely realized in the F

crs

-hybrid model, assuming

the existence of trapdoor permutations. Furthermore, [16] showed that the F

zk

functionality can be

securely realized given universally composable commitments. Combining these results together, we

have that F

zk

can be securely realized in the F

crs

-hybrid model, assuming the existence of trapdoor

permutations. Using the composition theorem we obtain a similar result to Theorem 4.2.2, with the

exception that F is realized in the F

crs

-hybrid model (rather than in the F

zk

-hybrid model). As

with Proposition 4.2.1, Theorem 4.2.2 is not stated exactly. It is formally restated in Section 4.8.2.
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On the distribution of the reference string. In obtaining the above corollary, the common

reference string is used only in the construction of the universally composable commitment scheme

(which is used for obtaining F

zk

). As we have mentioned, in the F

crs

-hybrid model, universally

composable commitments can be obtained assuming the existence of trapdoor permutations only.

However, in this case, the common reference string is not uniformly distributed. Nevertheless,

a uniformly distributed string can be used, under the additional assumption of the existence of

dense cryptosystems [27]. We therefore conclude that universally composable two-party computa-

tion can be obtained with a uniformly distributed reference string, under the assumption that the

following primitives exist: trapdoor permutations, dense cryptosystems and augmented two-party

non-committing encryption protocols.

Extensions to multi-party computation

We now describe how the two-party construction of Theorem 4.2.2 is extended to the setting of

multi-party computation, where any number of parties may be corrupt. Recall that in this setting,

each set of interacting parties is assumed to have access to an authenticated broadcast channel.

The outline of our construction is as follows. Similarly to the two-party case, we �rst construct

a multi-party protocol that is secure against semi-honest adversaries (as above, this protocol is

essentially that of GMW). Then, we construct a protocol compiler (again, like that of GMW), that

transforms semi-honest protocols into ones that are secure even against malicious adversaries. This

protocol compiler is constructed using a one-to-many extension of the commit-and-prove function-

ality, denoted F

1:M

cp

. The extension of the protocol that realizes two-party F

cp

to a protocol that

realizes one-to-many F

1:M

cp

constitutes the main di�erence between the two-party and multi-party

constructions. Therefore, in this outline, we focus exclusively on how this extension is achieved.

The �rst step in realizing F

1:M

cp

, is to construct one-to-many extensions of universal commitments

and zero-knowledge. In a one-to-many commitment scheme, all parties receive the commitment

(and the committer is bound to the same value for all parties). Likewise, in one-to-many zero-

knowledge, all parties verify the proof (and they either all accept or all reject the proof). Now,

any non-interactive commitment scheme can be transformed into a one-to-many equivalent by

simply having the committer broadcast its message to all parties. Thus, this functionality is

immediately obtained from our commitment scheme in Section 4.5 or from the scheme of [16] (both

of these constructions are non-interactive). However, obtaining one-to-many zero-knowledge is

more involved, since we do not know how to construct non-interactive adaptively-secure universally

composable zero-knowledge.

1

Nevertheless, using the methodology of [44], a one-to-many zero-

knowledge protocol can be constructed as follows. The construction is based on the universally-

composable zero-knowledge protocol of [16]. Speci�cally, they show that parallel executions of the

3-round zero-knowledge protocol of Hamiltonicity is universally composable, when a universally

composable commitment scheme is used for the prover's commitments. Thus, the prover runs a

copy of the above zero-knowledge protocol with each receiver over the broadcast channel, using

the one-to-many commitment scheme for its commitments. Furthermore, each verifying party

checks that the proofs of all the other parties are accepting (this is possible because the proof of

Hamiltonicity is publicly veri�able and because all parties view all the communication). Thus,

at the end of the protocol, all honest parties agree (without any additional communication) on

whether the proof was successful or not. (Note also that the adversary cannot cause an honest

prover's proof to be rejected.)

1

In the case of static adversaries, the non-interactive zero-knowledge protocol of [26] su�ces. Thus, here too, the

prover message can simply be broadcast and one-to-many zero-knowledge is obtained.
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It remains to describe how to realize F

1:M

cp

in the F

1:M

zk

-hybrid model. The basic idea is to

generalize the F

cp

protocol. As with zero-knowledge, this is not straightforward because in the

protocol for adaptive adversaries, the F

cp

commit-phase is interactive. Nevertheless, this problem

is solved by having the committer commit to its input value w by separately running the protocol for

the commit-phase of (two-party) F

cp

with every party over the broadcast channel. Following this,

the committer uses one-to-many zero-knowledge to prove that it committed to the same value in all

of these commitments. (Since each party views the communication from all the commitments, every

party can verify this zero-knowledge proof.) The prove phase is similar to the two-party case, except

that the one-to-many extension of zero-knowledge is used (instead of two-party zero-knowledge).

Finally, we note that, as in the two-party case, a multi-party protocol compiler can be con-

structed in the F

1:M

cp

-hybrid model, with no further assumptions. Denoting the ideal broadcast

functionality used by the parties by F

bc

, we have the following theorem:

Theorem 4.2.3 (multi-party computation in the malicious model { informal): Assume that trap-

door permutations exist. Then, for any multi-party ideal functionality F , there exists a protocol �

that securely realizes F in the (F

bc

;F

crs

)-hybrid model in the presence of malicious, static adver-

saries, and for any number of corruptions. Furthermore, if augmented two-party non-committing

encryption protocols exist, then there exists a protocol � that securely realizes F in the (F

bc

;F

crs

)-

hybrid model in the presence of malicious, adaptive adversaries, and for any number of corruptions.

As with Proposition 4.2.1, Theorem 4.2.3 is not stated exactly. It is formally restated in Sec-

tion 4.9.4.

4.3 Preliminaries

Section 4.3.1 reviews the framework of [14] and the universal composition theorem. In Section

4.3.2 we discuss issues that arise regarding universal composition when some amount of joint state

between protocols is desired. Finally, Section 4.3.3 presents the class of functionalities which we

will show how to securely realize. Before proceeding, we recall the de�nition of computational in-

distinguishability. A distribution ensemble X = fX(k; a)g

k2N;a2f0;1g

�
is an in�nite set of probability

distributions, where a distribution X(k; a) is associated with each k 2 N and a 2 f0; 1g

�

. The

ensembles considered in this work describe outputs where the parameter a represents input, and

the parameter k is taken to be the security parameter. A distribution ensemble is called binary if it

consists only of distributions over f0; 1g. Then,

De�nition 4.3.1 Two binary distribution ensembles X and Y are indistinguishable (written X

c

� Y )

if for any c 2 N there exists k

0

2 N such that for all k > k

0

and for all a we have

jPr(X(k; a) = 1)� Pr(Y (k; a) = 1)j < k

�c

:

4.3.1 Universally Composable Security: The general framework

We start by reviewing the syntax of message-driven protocols in asynchronous networks. We then

present the real-life model of computation, the ideal process, and the general de�nition of securely

realizing an ideal functionality. Next we present the hybrid model and the composition theorem.

The text is somewhat informal for clarity and brevity, and is mostly taken from the Overview

section of [14]. For full details see there.
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Protocol syntax. Following [55, 45], a protocol is represented as a system of probabilistic in-

teractive Turing machines (ITMs), where each ITM represents the program to be run within a

di�erent party. Speci�cally, the input and output tapes model inputs and outputs that are received

from and given to other programs running on the same machine, and the communication tapes

model messages sent to and received from the network. Adversarial entities are also modeled as

ITMs. We concentrate on a model where the adversaries have an arbitrary additional input, or an

\advice" string. From a complexity-theoretic point of view, this essentially implies that adversaries

are non-uniform ITMs.

In order to simplify the exposition, we introduce the following convention. We assume that all

protocols are such that the parties read their input tapes only at the onset of a protocol execution.

This can easily be achieved by having the parties copy their input tape onto an internal work tape.

This convention prevents problems that may occur when parties' input tapes are modi�ed in the

middle of a protocol execution (as is allowed in the model).

The basic framework

As sketched in Section 4.2, protocols that securely carry out a given task (or, protocol problem)

are de�ned in three steps, as follows. First, the process of executing a protocol in the presence of

an adversary and in a given computational environment is formalized. Next, an \ideal process" for

carrying out the task at hand is formalized. In the ideal process the parties do not communicate

with each other. Instead they have access to an \ideal functionality", which is essentially an

incorruptible \trusted party" that is programmed to capture the desired functionality of the given

task. A protocol is said to securely realize an ideal functionality if the process of running the

protocol amounts to \emulating" the ideal process for that ideal functionality. We overview the

model for protocol execution (called the real-life model), the ideal process, and the notion of protocol

emulation.

We concentrate on the following model of computation, aimed at representing current realis-

tic communication networks (such as the Internet). The communication takes place in an asyn-

chronous, public network, without guaranteed delivery of messages. We assume that the commu-

nication is authenticated and thus the adversary cannot modify messages sent by honest parties.

2

Furthermore, the adversary may only deliver messages that were previously sent by parties, and

may deliver each message sent only once. The fact that the network is asynchronous means that

the messages are not necessarily delivered in the order which they are sent. Parties may be bro-

ken into (i.e., become corrupted) throughout the computation, and once corrupted their behavior

is arbitrary (or, malicious). (Thus, our main consideration is that of malicious, adaptive adver-

saries. However, below we present the modi�cations necessary for modeling static and semi-honest

adversaries.) We do not trust data erasures; rather, we postulate that past states are available

to the adversary upon corruption. Finally, all the involved entities are restricted to probabilistic

polynomial time (or \feasible") computation.

Protocol execution in the real-life model. We sketch the process of executing a given protocol

� (run by parties P

1

; :::; P

n

) with some adversary A and an environment machine Z with input

z. All parties have a security parameter k 2 N and are polynomial in k. The execution consists

2

We remark that the basic model in [14] postulates unauthenticated communication, i.e. the adversary may

delete, modify, and generate messages at wish. Here we concentrate on authenticated networks for sake of simplicity.

Authentication can be added in standard ways. Formally, the model here corresponds to the F

auth

-hybrid model in

[14].
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of a sequence of activations, where in each activation a single participant (either Z, A, or some

P

i

) is activated. The environment is activated �rst. In each activation it may read the contents of

the output tapes of all the uncorrupted parties

3

and the adversary, and may write information on

the input tape of one of the parties or of the adversary. Once the activation of the environment

is complete (i,e, once the environment enters a special waiting state), the entity whose input tape

was written on is activated next.

Once the adversary is activated, it may read its own tapes and the outgoing communication

tapes of all parties. It may either deliver a message to some party by writing this message on the

party's incoming communication tape or corrupt a party. Only messages that were sent in the past

by some party can be delivered, and each message can be delivered at most once. Upon corrupting

a party, the adversary gains access to all the tapes of that party and controls all the party's future

actions. (We assume that the adversary also learns all the past internal states of the corrupted

party. This means that the model does not assume e�ective cryptographic erasure of data.) In

addition, whenever a party is corrupted the environment is noti�ed (say, via a message that is added

to the output tape of the adversary). If the adversary delivered a message to some uncorrupted

party in its activation then this party is activated once the activation of the adversary is complete.

Otherwise the environment is activated next.

Once a party is activated (either due to an input given by the environment or due to a message

delivered by the adversary), it follows its code and possibly writes local outputs on its output

tape and outgoing messages on its outgoing communication tape. Once the activation of the

party is complete the environment is activated. The protocol execution ends when the environment

completes an activation without writing on the input tape of any entity. The output of the protocol

execution is the output of the environment. We assume that this output consists of only a single

bit.

Let real

�;A;Z

(k; z; r) denote the output of environment Z when interacting with adversary A

and parties running protocol � on security parameter k, input z and random tapes r = r

Z

; r

A

; r

1

; : : : ; r

n

as described above (z and r

Z

for Z, r

A

for A; r

i

for party P

i

). Let real

�;A;Z

(k; z) denote the

random variable describing real

�;A;Z

(k; z; r) when r is uniformly chosen. Let real

�;A;Z

denote

the ensemble freal

�;A;Z

(k; z)g

k2N;z2f0;1g

� .

The ideal process. Security of protocols is de�ned via comparing the protocol execution in the

real-life model to an ideal process for carrying out (a single instance of) the task at hand. A key

ingredient in the ideal process is the ideal functionality that captures the desired functionality, or

the speci�cation, of that task. The ideal functionality is modeled as another ITM that interacts

with the environment and the adversary via a process described below. More speci�cally, the ideal

process involves an ideal functionality F , an ideal process adversary S, an environment Z with input

z, and a set of dummy parties

~

P

1

; :::;

~

P

n

.

As in the process of protocol execution in the real-life model, the environment is activated �rst.

As there, in each activation it may read the contents of the output tapes of all (dummy) parties and

the adversary, and may write information on the input tape of either one of the (dummy) parties

or of the adversary. Once the activation of the environment is complete the entity whose input

tape was written on is activated next.

The dummy parties are �xed and simple ITMs: Whenever a dummy party is activated with

input x, it forwards x to the ideal functionality F , say by writing x on the incoming communication

3

The adversary is not given read access to the corrupted parties' output tapes because once a party is corrupted,

it is no longer activated. Rather, the adversary sends messages in its name. Therefore, the output tapes of corrupted

parties are not relevant.
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tape of F . In this case F is activated next, and a note that the party sent a message to F is written

on the incoming communication tape of S. Whenever a dummy party is activated due to delivery

of some message (from F), it copies this message to its output. In this case Z is activated next.

Once F is activated, it reads the contents of its incoming communication tape, and potentially

sends messages to the parties and to the adversary by writing these messages on its outgoing

communication tape. Once the activation of F is complete, the entity that was last activated

before F is activated again. In the case this entity was one of the dummy parties, it immediately

relinquishes control to Z.

Once the adversary S is activated, it may read its own input tape and in addition it can read

the destinations of the messages on the outgoing communication tape of F . That is, S can see the

identity of the recipient of each message sent by F , but it cannot see the contents of this message

(unless the recipient of the message is S or a corrupted party

4

). S may either deliver a message from

F to some party by having this message copied to the party's incoming communication tape, write

a message from itself on F 's incoming communication tape

5

, or corrupt a party. Upon corrupting

a party, both Z and F learn the identity of the corrupted party (say, a special message is written

on their respective incoming communication tapes).

6

In addition, the adversary learns all the past

inputs and outputs of the party. Finally, the adversary controls the party's actions from the time

that the corruption takes place.

If the adversary delivered a message to some uncorrupted (dummy) party in an activation then

this party is activated once the activation of the adversary is complete. Otherwise the environment

is activated next.

As in the real-life model, the protocol execution ends when the environment completes an

activation without writing on the input tape of any entity. The output of the protocol execution is

the (one bit) output of Z.

Let ideal

F ;S;Z

(k; z; r) denote the output of environment Z after interacting in the ideal process

with adversary S and ideal functionality F , on security parameter k, input z, and random input

r = r

Z

; r

S

; r

F

as described above (z and r

Z

for Z, r

S

for S; r

F

for F). Let ideal

F ;S;Z

(k; z) denote

the random variable describing ideal

F ;S;Z

(k; z; r) when r is uniformly chosen. Let ideal

F ;S;Z

denote the ensemble fideal

F ;S;Z

(k; z)g

k2N;z2f0;1g

�
.

Securely realizing an ideal functionality. We say that a protocol � securely realizes an ideal

functionality F if for any real-life adversary A there exists an ideal-process adversary S such that no

environment Z, on any input, can tell with non-negligible probability whether it is interacting with

A and parties running � in the real-life process, or with S and F in the ideal process. This means

that, from the point of view of the environment, running protocol � is `just as good' as interacting

with an ideal process for F . (In a way, Z serves as an \interactive distinguisher" between the two

4

Note that the ideal process allows S to obtain the output values sent by F to the corrupted parties as soon as

they are generated. Furthermore, if at the time that S corrupts some party P

i

there are messages sent from F to P

i

,

then S immediately obtains the contents of these messages.

5

Many natural ideal functionalities indeed send messages to the adversary S (see the zero-knowledge and commit-

ments functionalities of Sections 4.6 and 4.5 for examples). On the other hand, having the adversary send messages

to F is less common. Nevertheless, this option can be useful in order to relax the requirements on protocols that

realize the functionality. For example, it may be easier to obtain coin-tossing if the adversary is allowed to bias some

of the bits of the result. If this is acceptable for the application in mind, we can allow the adversary this capability

by having it send its desired bias to F .

6

Allowing F to know which parties are corrupted gives it considerable power. This power provides greater freedom

in formulating ideal functionalities for capturing the requirements of given tasks. On the other hand, it also inherently

limits the scope of general realizability theorems. See more discussion in Section 4.3.3.
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processes. Here it is important that Z can provide the process in question with adaptively chosen

inputs throughout the computation.) We have:

De�nition 4.3.2 Let n 2 N. Let F be an ideal functionality and let � be an n-party protocol. We

say that � securely realizes F if for any adversary A there exists an ideal-process adversary S such

that for any environment Z,

ideal

F ;S;Z

c

� real

�;A;Z

: (4.1)

Non-trivial protocols and the requirement to generate output. Recall that the ideal

process does not require the ideal-process adversary to deliver messages that are sent by the ideal

functionality to the dummy parties. Consequently, the de�nition provides no guarantee that a

protocol will ever generate output or \return" to the calling protocol. Indeed, in our setting where

message delivery is not guaranteed, it is impossible to ensure that a protocol \terminates" or

generates output. Rather, the de�nition concentrates on the security requirements in the case that

the protocol generates output.

A corollary of the above fact is that a protocol that \hangs", never sends any messages and never

generates output, securely realizes any ideal functionality. Thus, in order to obtain a meaningful

feasibility result, we introduce the notion of a non-trivial protocol. Such a protocol has the property

that if the real-life adversary delivers all messages and does not corrupt any parties, then the ideal-

process adversary also delivers all messages (and does not corrupt any parties). Note that in a

non-trivial protocol, a party may not necessarily receive output. However, this only happens if

either the functionality does not specify output for this party, or if the real-life adversary actively

interferes in the execution (by either corrupting parties or refusing to deliver some messages).

Our main result is to show the existence of non-trivial protocols for securely realizing any ideal

functionality. All our protocols are in fact clearly non-trivial; therefore, we ignore this issue from

here on.

Relaxations of De�nition 4.3.2. We recall two standard relaxations of the de�nition:

� Static (non-adaptive) adversaries. De�nition 4.3.2 allows the adversary to corrupt parties

throughout the computation. A simpler (and somewhat weaker) variant forces the real-life

adversary to corrupt parties only at the onset of the computation, before any uncorrupted party

is activated. We call such adversaries static.

� Passive (semi-honest) adversaries. De�nition 4.3.2 gives the adversary complete control over

corrupted parties (such an adversary is called malicious). Speci�cally, the model states that from

the time of corruption the corrupted party is no longer activated, and instead the adversary sends

messages in the name of that party. In contrast, when a semi-honest adversary corrupts a party,

the party continues to follow the prescribed protocol. Nevertheless, the adversary is given read

access to the internal state of the party at all times, and is also able to modify the values

that the environment writes on the corrupted parties' input tapes.

7

Formally, if in a given

activation, the environment wishes to write information on the input tape of a corrupted party,

then the environment �rst passes the adversary the value x that it wishes to write (along with

the identity of the party whose input tape it wishes to write to). The adversary then passes

7

Allowing a semi-honest adversary to modify a corrupted party's input is somewhat non-standard. However, this

simpli�es the presentation of this work (and in particular the protocol compiler). All the protocols presented for the

semi-honest model in this paper are secure both when the adversary can modify a corrupted party's input tape and

when it cannot.
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a (possibly di�erent) value x

0

back to the environment. Finally, the environment writes x

0

on

the input tape of the corrupted party, following which the corrupted party is activated. We

stress that when the environment writes on the input tape of an honest party, the adversary

learns nothing of the value and cannot modify it. Everything else remains the same as in the

above-described malicious model. We say that protocol � securely realizes functionality F for

semi-honest adversaries, if for any semi-honest real-life adversary A there exists an ideal-process

semi-honest adversary S such that Eq. (4.1) holds for any environment Z.

The composition theorem

The hybrid model. In order to state the composition theorem, and in particular in order to

formalize the notion of a real-life protocol with access to multiple copies of an ideal functionality,

the hybrid model of computation with access to an ideal functionality F (or, in short, the F-hybrid

model) is formulated. This model is identical to the real-life model, with the following additions.

On top of sending messages to each other, the parties may send messages to and receive messages

from an unbounded number of copies of F . Each copy of F is identi�ed via a unique session

identi�er (SID); all messages addressed to this copy and all message sent by this copy carry the

corresponding SID. (Sometimes a copy of F will interact only with a subset of the parties. The

identities of these parties is determined by the protocol in the F -hybrid model.)

The communication between the parties and each one of the copies of F mimics the ideal

process. That is, once a party sends a message m to a copy of F with a particular SID, that copy

is immediately activated to receive this message. (If no such copy of F exists then a new copy of

F is created and immediately activated to receive m.) Furthermore, although the adversary in the

hybrid model is responsible for delivering the messages from the copies of F to the parties, it does

not have access to the contents of these messages.

The hybrid model does not specify how the SIDs are generated, nor does it specify how parties

\agree" on the SID of a certain protocol copy that is to be run by them. These tasks are left

to the protocol in the hybrid model. This convention simpli�es formulating ideal functionalities,

and designing protocols that securely realize them, by freeing the functionality from the need to

choose the SIDs and guarantee their uniqueness. In addition, it seems to reect common practice

of protocol design in existing networks. See more discussion following Theorem 4.3.3 below.

Let hybrid

F

�;A;Z

(k; z) denote the random variable describing the output of environment ma-

chine Z on input z, after interacting in the F-hybrid model with protocol �, adversary A, anal-

ogously to the de�nition of real

�;A;Z

(k; z). (We stress that here � is a hybrid of a real-life

protocol with ideal evaluation calls to F .) Let hybrid

F

�;A;Z

denote the distribution ensemble

fhybrid

F

�;A;Z

g

k2N;z2f0;1g

� .

Replacing a call to F with a protocol invocation. Let � be a protocol in the F -hybrid

model, and let � be a protocol that securely realizes F (with respect to some class of adversaries).

The composed protocol �

�

is constructed by modifying the code of each ITM in � so that the

�rst message sent to each copy of F is replaced with an invocation of a new copy of � with fresh

random input, with the same SID, and with the contents of that message as input. Each subsequent

message to that copy of F is replaced with an activation of the corresponding copy of �, with the

contents of that message given to � as new input. Each output value generated by a copy of � is

treated as a message received from the corresponding copy of F . (See [14] for more details on the

operation of \composed protocols", where a party, i.e. an ITM, runs multiple protocol-instances

concurrently.)
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If protocol � is a protocol in the real-life model then so is �

�

. If � is a protocol in some G-hybrid

model (i.e., � uses ideal evaluation calls to some functionality G) then so is �

�

.

Theorem statement. In its general form, the composition theorem basically says that if � se-

curely realizes F in the G-hybrid model for some functionality G, then an execution of the composed

protocol �

�

, running in the G-hybrid model, \emulates" an execution of protocol � in the F-hybrid

model. That is, for any adversary A in the G-hybrid model there exists an adversary S in the F-

hybrid model such that no environment machine Z can tell with non-negligible probability whether

it is interacting with A and �

�

in the G-hybrid model or it is interacting with S and � in the

F-hybrid model.

A corollary of the general theorem states that if � securely realizes some functionality I in the

F-hybrid model, and � securely realizes F in the G-hybrid model, then �

�

securely realizes I in

the G-hybrid model. (Here one has to de�ne what it means to securely realize functionality I in

the F-hybrid model. This is done in the natural way.) That is:

Theorem 4.3.3 ([14]) Let F ;G;I be ideal functionalities. Let � be an n-party protocol in the

F-hybrid model, and let � be an n-party protocol that securely realizes F in the G-hybrid model.

Then for any adversary A in the G-hybrid model there exists an adversary S in the F-hybrid model

such that for any environment machine Z we have:

hybrid

G

�

�

;A;Z

c

� hybrid

F

�;S;Z

: (4.2)

In particular, if � securely realizes functionality I in the F-hybrid model then �

�

securely realizes

I in the G-hybrid model.

On the uniqueness of the session IDs. The session IDs play a central role in the hybrid model

and the composition operation, in that they enable the parties to distinguish di�erent instances

of a protocol. Indeed, di�erentiating protocol instances via session IDs is a natural and common

mechanism in protocol design.

Yet, the current formulation of the hybrid model provides a somewhat over-idealized treatment

of session IDs. Speci�cally, it is assumed that the session IDs are globally unique and common to

all parties. That is, it is assumed that no two copies of an ideal functionality with the same session

ID exist, even if the two copies have di�erent (and even disjoint) sets of participants. Furthermore,

all parties are assumed to hold the same SID (and they must somehow have agreed upon it). This

treatment greatly simpli�es the exposition of the model and the de�nition of ideal functionalities

and protocols that realize them. Nonetheless, it is somewhat restrictive in that it requires the

protocol in the hybrid model to guarantee global uniqueness of common session IDs. This may

be hard (or even impossible) to achieve in the case that the protocol in the hybrid model is truly

distributed and does not involve global coordination. See [66] for more discussion on this point.

More elaborate ways of de�ning session IDs so as not to require global uniqueness exist. We leave

this issue for future work.

4.3.2 Universal Composition with Joint State

Traditionally, composition operations among protocols assume that the composed protocol in-

stances have disjoint states, and in particular independent local randomness. The universal com-

position operation is no exception: if protocol � securely realizes some ideal functionality F , and
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protocol � in the F-hybrid model uses m copies of F , then the composed protocol �

�

uses m

independent copies of �, and no two copies of � share any amount of state.

This property of universal composition (and of protocol composition in general) is bothersome

in our context, where we wish to construct and analyze protocols in the common reference string

(CRS) model. Let us elaborate. Assume that we follow the natural formalization of the CRS model

as the F

crs

-hybrid model, where F

crs

is the functionality that chooses a string from the speci�ed

distribution and hands it to all parties. Now, assume that we construct a protocol � that realizes

some ideal functionality F in the F

crs

-hybrid model (say, let F be the commitment functionality,

F

com

). Assume further that some higher level protocol � (in the F -hybrid model) uses multiple

copies of F , and that we use the universal composition operation to replace each copy of F with

an instance of �. We now obtain a protocol �

�

that runs in the F

crs

-hybrid model and emulates

�. However, this protocol is highly wasteful of the reference string. Speci�cally, each instance of

� in �

�

has its own separate copy of F

crs

, or in other words each instance of � requires its own

independent copy of the reference string. This stands in sharp contrast with our common view of

the CRS model, where an unbounded number of protocol instances should be able to use the same

copy of the reference string.

One way to get around this limitation of universal composition (and composition theorems in

general) is to treat the entire, multi-session interaction as a single instance of a more complex

protocol, and then to explicitly require that all sessions use the same copy of the reference string.

More speci�cally, proceed as follows. First, given a functionality F as described above, de�ne a

functionality,

^

F , called the \multi-session extension of F". Functionality

^

F will run multiple copies

of F , where each copy will be identi�ed by a special \sub-session identi�er", ssid. Upon receiving

a message for the copy associated with ssid,

^

F activates the appropriate copy of F (running within

^

F), and forwards the incoming message to that copy. If no such copy of F exists then a new copy is

invoked and is given that ssid. Outputs generated by the copies of F are copied to

^

F 's output. The

next step after having de�ned

^

F is to construct protocols that directly realize

^

F in the F

crs

-hybrid

model, while making sure that the constructed protocols use only a single copy of F

crs

.

This approach works, in the sense that it allows constructing and analyzing universally com-

posable protocols that are e�cient in their use of the reference string. However, it results in

a cumbersome and non-modular formalization of ideal functionalities and protocols in the CRS

model. Speci�cally, if we want to make sure that multiple sessions of some protocol (or set of

protocols) use the same copy of the reference string, then we must treat all these sessions (that

may take place among di�erent sets of parties) as a single instance of some more complex proto-

col. For example, assume that we want to construct commitments in the CRS model, then use

these commitments to construct UC zero-knowledge protocols, and then use these protocols in yet

higher-level protocols. Then, in any level of protocol design, we must design functionalities and

protocols that explicitly deal with multiple sessions. Furthermore, we must prove the security of

these protocols within this multi-session setting. This complexity obviates much of the advantages

of universal composition (and protocol composition in general).

In contrast, we would like to be able to formulate a functionality that captures only a single

instance of some interaction, realize this functionality by some protocol � in the CRS model,

and then securely compose multiple copies of � in spite of the fact that all copies use the same

copy of the reference string. This approach is, in general, dangerous, since it can lead to insecure

protocols. However, there are conditions under which such \composition with joint state" maintains

security. This section describes a general tool that enables the composition of protocols even when

they have some amount of joint state, under some conditions. Using this tool (suggested in [21]

and called universal composition with joint state (JUC)), we are able to state and realize most of the
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functionalities in this work as functionalities for a single session, while still ending up with protocols

where an unbounded number of instances use the same copy of the common reference string. This

greatly simpli�es the presentation while not detracting from the composability and e�ciency of the

presented protocols.

In a nutshell, universal composition with joint state is a new composition operation that can

be sketched as follows. Let F be an ideal functionality, and let � be a protocol in the F -hybrid

model. Let

^

F denote the \multi-session extension of F" sketched above, and let � be a protocol

that securely realizes

^

F . Then construct the composed protocol �

[�]

by replacing all copies of F in

� by a single copy of �. (We stress that � assumes that it has access to multiple independent copies

of F . Still, we replace all copies of F with a single copy of some protocol.) The JUC theorem

states that protocol �

[�]

, running in the real-life model, \emulates" � in the usual sense. A more

detailed presentation follows.

The multi-session extension of an ideal functionality. We formalize the notion of a multi-

session extension of an ideal functionality, sketched above. Let F be an ideal functionality. Recall

that F expects each incoming message to contain a special �eld consisting of its session ID (SID).

All messages received by F are expected to have the same SID. (Messages that have di�erent SIDs

than that of the �rst message are ignored.) Similarly, all outgoing messages generated by F carry

the same SID.

The multi-session extension of F , denoted

^

F , is de�ned as follows.

^

F expects each incoming

message to contain two special �elds. The �rst is the usual SID �eld as in any ideal functionality.

The second �eld is called the sub-session ID (SSID) �eld. Upon receiving a message (sid; ssid; v)

(where sid is the SID, ssid is the SSID, and v is an arbitrary value or list of values),

^

F �rst veri�es

that sid is the same as that of the �rst message, otherwise the message is ignored. Next,

^

F checks

if there is a running copy of F whose session ID is ssid. If so, then

^

F activates that copy of F with

incoming message (ssid; v), and follows the instructions of this copy. Otherwise, a new copy of F

is invoked (within

^

F) and immediately activated with input (ssid; v). From now on, this copy is

associated with sub-session ID ssid. Whenever a copy of F sends a message (ssid; v

0

) to some party

P

i

,

^

F sends (sid; ssid; v

0

) to P

i

, and sends ssid to the adversary. (Sending ssid to the adversary

implies that

^

F does not hide which copy of F is being activated within

^

F .)

The composition operation. Let F be an ideal functionality. The composition operation,

called universal composition with joint state (JUC), takes two protocols as arguments: a protocol �

in the F-hybrid model and a protocol � that securely realizes

^

F . The result is a composed protocol

denoted �

[�]

and described as follows.

Recall that the F-hybrid model is identical to the real-life model of computation, with the

exception that the parties have access to multiple copies of F . The di�erent copies of F are

identi�ed via their SIDs as described above. Let F

(sid)

denote the copy of functionality F with SID

sid. Protocol �

[�]

behaves like � with the following exceptions:

8

1. When activated for the �rst time within party P

i

, �

[�]

invokes a copy of protocol � with SID

sid

0

. That is, a copy of the ith Interactive Turing Machine in � is invoked as a subroutine

within P

i

, and is (locally) given identity sid

0

. No activation of � occurs yet. (sid

0

is some

�xed, prede�ned value. For instance, set sid

0

= 0.)

8

For simplicity, we assume that � securely realizes

^

F in the real-life model of computation. The composition

operation and theorem can be extended in a natural way to account for protocols � that securely realize

^

F in the

G-hybrid model for some ideal functionality G.
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2. Whenever � instructs party P

i

to send a message (sid; v) to F

(sid)

, protocol �

�

instructs P

i

to activate � with input value (sid

0

; sid; v).

3. Whenever protocol � wishes to send a message m to some party P

i

0

, P

i

writes the message

(�; sid; P

i

0

;m) on the outgoing communication tape.

4. Whenever activated due to delivery of a message (�; sid;m) from P

i

0

, P

i

activates � with

incoming message (sid; P

i

0

;m).

5. Whenever (the single copy of) � generates an output value (sid; v), proceed just as � proceeds

with incoming message v from F

(sid)

.

Theorem statement. The JUC theorem asserts that if �̂ securely realizes

^

F , then protocol �

[�̂]

behaves essentially like � with ideal access to multiple independent copies of F . More precisely,

Theorem 4.3.4 (Universal composition with joint state [21]): Let F ;G be ideal functionalities.

Let � be a protocol in the F-hybrid model, and let �̂ be a protocol that securely realizes

^

F , the multi-

session extension of F , in the G-hybrid model. Then the composed protocol �

[�̂]

in the G-hybrid

model emulates protocol � in the F-hybrid model. That is, for any adversary A there exists an

adversary S such that for any environment Z we have

hybrid

F

�;S;Z

c

� hybrid

G

�

[�]

;A;Z

:

In particular, if � securely realizes some functionality I in the F-hybrid model then �

[�]

securely

realizes I in the G-hybrid model.

Discussion. Jumping ahead, we sketch our use of the JUC theorem. Recall the commitment

functionality, F

com

, formalized in [16]. This functionality captures the process of commitment and

decommitment to a single value, performed by two parties. In addition, [16] show how to realize

^

F

com

in the CRS model, using a single copy of the CRS for all commitments. (In [16] functionality

^

F

com

is called F

mcom

.) An alternative protocol that realizes

^

F

com

is also presented here.

In this work we construct protocols that use these commitment protocols. However, to preserve

modularity of exposition, we present our protocols in the F

com

-hybrid model, while allowing the

protocols to use multiple copies of F

com

and thus enjoy full modularity. We then use universal

composition with joint state to compose any protocol � in the F

com

-hybrid model with any protocol

� that securely realized

^

F

com

using a single copy of the reference string, to obtain a protocol �

[�]

that emulates � and uses only a single copy of the reference string for all the commitments. (We

remark that the same technique is applied also to protocols that use the ideal zero-knowledge

functionality, F

zk

. See more details in Section 4.6.)

4.3.3 Well-Formed Functionalities

We would like to be able to state a theorem saying that any ideal functionality can be securely

realized. However, for technical reasons, such a claim cannot be made in our model. The �rst

problem that arises is as follows. Since the ideal functionality is informed of the identities of the

corrupted parties, it can do things that cannot be realized by any protocol. For example, consider

the ideal functionality that lets all parties know which parties are corrupted. Then this functionality

cannot be realized in the face of an adversary that corrupts a single random party but instructs

that party to continue following the prescribed protocol.
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In order to bypass this problem, we de�ne a special class of functionalities that do not utilize

their direct knowledge of the identities of the corrupted parties. For the lack of a better name,

we call these functionalities well-formed. A well-formed functionality consists of a main proce-

dure (called the shell) and a subroutine (called the core.) The core is an arbitrary probabilistic

polynomial-time algorithm, while the shell is a simple procedure described as follows. The shell

forwards any incoming message to the core, with the exception that noti�cations of corruptions

of parties are not forwarded. Outgoing messages generated by the core are copied by the shell to

the outgoing communication tape. The above de�nition guarantees that the code of a well-formed

ideal functionality \does not depend" on its direct knowledge regarding who is corrupted.

In subsequent sections, we show how to realize any well-formed functionality in the face of static

adversaries. However, another technicality arises when considering adaptive adversaries. Consider

for instance a two-party ideal functionality F that works as follows: Upon activation, it chooses two

large random primes p and q and sends n = pq to both parties. The value n is the only message

output by the functionality; in particular, it never reveals the values p and q. The important

property of this functionality that we wish to focus on is the fact that it has private randomness

that is never revealed. Such a functionality can be securely realized in the static corruption model.

However, consider what happens in a real execution if an adaptive adversary corrupts both parties

after they output n. In this case, all prior randomness is revealed (recall that we assume no

erasures). Therefore, if this randomness explicitly de�nes the primes p and q (as is the case in all

known protocols for such a problem), these values will necessarily be revealed to the adversary. On

the other hand, in the ideal process, even if both parties are corrupted, p and q are never revealed.

9

(We stress that this is not a weakness of the model because in the case that all participating parties

are corrupted, there are no security requirements on a protocol. In particular, there are no honest

parties to \protect"). In light of the above discussion, we de�ne adaptively well-formed functionalities

that do not keep private randomness when all parties are corrupted. Formally, such functionalities

have a shell and a core, as described above. However, in addition to forwarding messages to and

from the core, the shell keeps track of the parties with whom the functionality interacts. If at

some activation all these parties are corrupted, then the shell sends the random tape of the core

to the adversary. Thus, when all the parties participating in some activation are corrupted, all

the randomness is revealed (even in the ideal process). We show how any adaptively well-formed

functionality can be securely realized in the face of adaptive adversaries.

In order to make sure that the multi-session extension of an adaptively well-formed functionality

remains adaptively well-formed, we slightly modify the de�nition of the multi-session extension of

an ideal functionality (see Section 4.3.2) as follows. If the given ideal functionality F is adaptively

well-formed, then

^

F , the multi-session extension of F , is an adaptively well-formed functionality

de�ned as follows. The core of

^

F consists of the multi-session extension (in the usual sense) of

the core of F . The shell of

^

F is as de�ned above except that it separately keeps track of the

participating parties of each session. Then, if all the participating parties of some session are

corrupted in some activation, the shell sends the random tape of the core for that session to the

adversary. (Recall that each session of the multi-session functionality uses an independent random

tape.) We note that the JUC theorem (Theorem 4.3.4) holds even with respect to the modi�ed

de�nition of multi-session extensions.

9

We do not claim that it is impossible to realize this speci�c functionality. Indeed, it may be possible to sample

the domain fn j n = pqg (or a domain that is computationally indistinguishable from it) without knowing p or q.

Nevertheless, the example clearly demonstrates the problem that arises.
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4.4 Two-party Secure Computation for Semi-Honest Adversaries

This section presents general constructions for securely realizing any two-party ideal functionality

in the presence of semi-honest adversaries. In the case of static adversaries, the construction

is basically that of Goldreich, Micali and Wigderson [52]. In the case of adaptive adversaries

the construction of oblivious transfer is somewhat di�erent (however, the rest of the construction

remains unchanged). The main di�erence between our presentation and that of [44], is that we

consider the reactive case where parties may receive new inputs during the run of the protocol.

Each new input may depend on the current adversarial view of the system. In particular, it may

depend on previous outputs of this execution and on the activity in other executions. We note

that although the basic construction of our protocol is very similar to [52], our proof is signi�cantly

di�erent. This is due to the fact that we show universal composability, and in addition consider

also the adaptive corruption case (and not only the static case like in [52]).

We begin by presenting the oblivious-transfer ideal functionality F

ot

, and demonstrate how

to realize this functionality in the presence of semi-honest adversaries (both static and adaptive).

Following this we present our protocol for securely realizing any two-party functionality, in the

F

ot

-hybrid model.

4.4.1 Universally Composable Oblivious Transfer

Oblivious transfer [75, 35] is a two-party functionality, involving a sender with input x

1

; :::; x

`

, and

a receiver with input i 2 f1; : : : ; `g. The receiver should learn x

i

(and nothing else) and the sender

should learn nothing. An exact de�nition of the ideal oblivious transfer functionality, denoted F

`

ot

,

appears in Figure 4.1. (Using standard terminology, F

`

ot

captures 1-out-of-` OT.)

Functionality F

`

ot

F

`

ot

proceeds as follows, parameterized with an integer ` and running with an oblivious transfer

sender T , a receiver R and an adversary S.

1. Upon receiving a message (sender; sid; x

1

; :::; x

`

) from T , where each x

j

2 f0; 1g

m

, record the

tuple (x

1

; :::; x

`

). (The length of the strings m is �xed and known to all parties.)

2. Upon receiving a message (receiver; sid; i) from R, where i 2 f1; : : : ; `g, send (sid; x

i

) to R

and (sid) to S, and halt. (If no (sender; : : :) message was previously sent, then send nothing

to R.)

Figure 4.1: The oblivious transfer functionality, F

`

ot

Section 4.4.1 presents a protocol that securely realizes F

ot

for static adversaries. Section 4.4.1

presents our protocol for securely realizing F

ot

for adaptive adversaries.

Static UC Oblivious Transfer

The oblivious transfer protocol of [52, 44], denoted SOT (for Static Oblivious Transfer) is presented

in Figure 4.2. For simplicity we present the protocol for the case where each of the ` input values

is a single bit. (In the semi-honest case, oblivious transfer for strings can be constructed from this

one via the composition theorem.)
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Protocol SOT

Proceed as follows, on security parameter k.

1. Given input (sender; sid; x

1

; :::; x

`

), party T chooses a trapdoor permutation f over f0; 1g

k

,

together with its inverse f

�1

, and sends (sid; f) to the receiver R. (The permutation f is

chosen uniformly from a given family of trapdoor permutations.)

2. Given input (receiver; sid; i), and having received (sid; f) from T , receiver R chooses

y

1

; :::y

i�1

; r; y

i+1

; :::; y

`

2

R

f0; 1g

k

, computes y

i

= f(r), and sends (sid; y

1

; : : : ; y

`

) to T .

3. Having received (sid; y

1

; : : : ; y

`

) from R, the sender T sends (sid; x

1

� B(f

�1

(y

1

)); : : : ; x

`

�

B(f

�1

(y

`

))) to R, where B(�) is a hard-core predicate for f .

4. Output: Having received (sid; b

1

; : : : ; b

`

) from T , the receiver R outputs (sid; b

i

�B(r)).

Figure 4.2: The static, semi-honest oblivious transfer protocol

Claim 4.4.1 Assuming that f is a trapdoor permutation, Protocol SOT securely realizes F

`

ot

in

the presence of semi-honest, static adversaries.

Proof: Let A be a semi-honest, static adversary that interacts with parties running the above

protocol. We construct an adversary S for the ideal process for F

`

ot

such that no environment Z

can tell with non-negligible probability whether it is interacting with A and the above protocol or

with S in the ideal process for F

`

ot

. Recall that S interacts with the ideal functionality F

`

ot

and

with the environment Z. Simulator S starts by invoking a copy of A and running a simulated

interaction of A with Z and parties running the protocol. (We refer to the interaction of S in the

ideal process as external interaction. The interaction of A with the simulated A is called internal

interaction.) S proceeds as follows:

Simulating the communication with Z: Every input value that S receives from Z is written

on A's input tape (as if coming from A's environment). Likewise, every output value written

by A on its output tape is copied to S's own output tape (to be read by S's environment Z).

Simulating the case where the sender T only is corrupted: S simulates a real execution in

which T is corrupted. S begins by activating A and receiving the message (sid; f) that A

(controlling T ) would send R in a real execution. Then, S chooses y

1

; : : : ; y

`

2

R

f0; 1g

k

and

simulates R sending T the message (sid; y

1

; : : : ; y

`

) in the internal interaction. Finally, when

A sends the message (sid; b

1

; : : : ; b

`

) from T to R in the internal interaction, S externally sends

T 's input x

1

; : : : ; x

`

to F

`

ot

and delivers the output from F

`

ot

to R. (Recall that in the semi-

honest model as de�ned here, A is able to modify the input tape of T . Therefore, the value

x

1

; : : : ; x

`

sent by S to F

`

ot

is the (possibly) modi�ed value. Formally this causes no problem

because actually it is the environment who writes the modi�ed value, after \consultation"

with A. Since all communication is forwarded unmodi�ed between A and Z, the value that

Z writes on T 's input tape is the already-modi�ed value. We ignore this formality in the

subsequent proofs in this section.)

Simulating the case where the receiver R only is corrupted: S begins by activating A and

internally sending it the message that A (controlling R) receives from T in a real execution.

That is, S chooses a random trapdoor permutation f and its inverse f

�1

, and sends it to
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A. Next, it internally receives a message of the form (sid; y

1

; : : : ; y

`

) from A. Simulator S

then externally sends R's input i to F

`

ot

and receives back the output x

i

. S concludes the

simulation by choosing b

1

; : : : ; b

i�1

; b

i+1

; : : : ; b

`

uniformly, setting b

i

= x

i

� B(f

�1

(y

i

)), and

internally sending A the message (sid; b

1

; : : : ; b

`

). (Recall that x

i

is the output as obtained

by S from the ideal functionality F

`

ot

.)

Simulating the case that neither party is corrupted: In this case, S receives a message (sid)

signalling it that T and R concluded an ideal execution with F

ot

. S then generates a sim-

ulated transcript of messages between the real model parties. That is, S generates T 's �rst

message (sid; f) as the real T would, sets R's reply to be (sid; y

1

; : : : ; y

`

) where y

j

2

R

f0; 1g

k

for each j, and �nally sets T 's second message to (sid; b

1

; : : : ; b

`

) where b

j

2

R

f0; 1g for every

j.

Simulating the case that both parties are corrupted: In this case, S knows both parties'

inputs and can therefore simulate a protocol execution by generating the actual messages

that the parties would send in a real execution.

We demonstrate that ideal

F

ot

;S;Z

c

� real

sot;A;Z

. This is done by showing that the joint view of

Z and A in the execution of SOT is indistinguishable from the joint view of Z and the simulated A

within S in the ideal process. First, notice that the simulation for the case where T is corrupted is

perfect. This is because in both the ideal simulation and a real execution, the message received by T

consists of ` uniformly distributed k-bit strings, and the output of R is the same in both executions.

(Notice that since f is a permutation, choosing r uniformly and computing y

i

= f(r), as occurs in a

real execution, results in a uniformly distributed y

i

. Furthermore, the output of R is b

i

�B(f

�1

(y

i

))

where b

i

is the ith value sent by T .) Second, we claim that the simulation for the case where R is

corrupted is indistinguishable from in a real execution. The only di�erence between the two is in the

message b

1

; : : : ; b

`

received by R. The bit b

i

is identically distributed in both cases (in particular,

in both the simulation and a real execution it equals x

i

�B(f

�1

(y

i

))). However, all the bits b

j

for

j 6= i are uniformly chosen and are not distributed according to x

j

� B(f

�1

(y

j

)). Nevertheless,

due to the hard-core properties of B, the bit B(f

�1

(y

j

)) for a random y

j

is indistinguishable from

a random-bit b

j

2

R

f0; 1g. The same is also true for x

j

� B(f

�1

(y

j

)) when x

j

is �xed before y

j

is chosen. (More precisely, given an environment that distinguishes with non-negligible probability

between the real-life and the ideal interactions, we can construct an adversary that contradicts

the hard-core property of B.) Thus the views are indistinguishable. By the same argument, we

also have that the simulation for the case that neither party is corrupted results in a view that is

indistinguishable from a real execution. This completes the proof.

Our proof of security of the above protocol fails in the case of adaptive adversaries. Intuitively the

reason is that when a party gets corrupted, S cannot present the simulated A with a valid internal

state of the corrupted party. (This internal state should be consistent with the past messages sent by

the party and with the local input and output of that party.) In particular, the messages (sid; f),

(sid; y

1

; : : : ; y

`

) and (sid; b

1

; : : : ; b

`

) fully de�ne the input bits x

1

; : : : ; x

`

. However, in the case

that T is not initially corrupted, S does not know x

1

; : : : ; x

`

and therefore with high probability,

the messages de�ne a di�erent set of input bits. Thus, if A corrupts T after the execution has

concluded, S cannot provide A with an internal state of T that is consistent both with x

1

; : : : ; x

`

and the simulated transcript that it had previously generated.
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Adaptive UC Oblivious Transfer

Due to the above-described problem, we use a di�erent protocol for securely realizing F

`

ot

for the

case of adaptive, semi-honest adversaries. A main ingredient in this protocol are non-committing

encryptions as de�ned in [15] and constructed in [15, 6, 24]. In addition to standard semantic

security, such encryption schemes have the property that ciphertexts that can be opened to both

0 and 1 can be generated. That is, a non-committing (bit) encryption scheme consists of a tuple

(G;E;D; S), where G is a key generation algorithm, E and D are encryption and decryption

algorithms, and S is a simulation algorithm (for generating non-committing ciphertexts). The triple

(G;E;D) satis�es the usual properties of semantically secure encryption. That is, G(1

k

) = (e; d)

where e and d are the respective encryption and decryption keys, and D

d

(E

e

(m)) = m except

with negligible probability. Furthermore, fE

e

(1)g is indistinguishable from fE

e

(0)g. In addition,

the simulator algorithm S is able to generate \dummy ciphertexts" that can be later \opened" as

encryptions of either 0 or 1. More speci�cally, it is required that S(1

k

) = (e; c; r

0

; r

1

; d

0

; d

1

) with

the following properties:

� The tuple (e; c; r

0

; d

0

) looks like a normal encryption and decryption process for the bit 0. That

is, (e; c; r

0

; d

0

) is indistinguishable from a tuple (e

0

; c

0

; r

0

; d

0

) where (e

0

; d

0

) is a randomly chosen

pair of encryption and decryption keys, r

0

is randomly chosen, and c

0

= E

e

(0; r

0

). (In particular,

it should hold that D

d

0

(c) = 0.)

� The tuple (e; c; r

1

; d

1

) looks like a normal encryption and decryption process for the bit 1. That

is, (e; c; r

1

; d

1

) is indistinguishable from a tuple (e

0

; c

0

; r

0

; d

0

) where (e

0

; d

0

) is a randomly chosen

pair of encryption and decryption keys, r

0

is randomly chosen, and c

0

= E

e

(1; r

0

). (In particular,

it should hold that D

d

1

(c) = 1.)

Thus, given a pair (e; c), it is possible to explain c both as an encryption of 0 (by providing d

0

and r

0

) and as an encryption of 1 (by providing d

1

and r

1

). Here, we actually use augmented

non-committing encryption protocols that have the following two additional properties:

1. Oblivious key generation: It should be possible to choose a public encryption key e \without

knowing" the decryption key d. That is, there should exist a di�erent key generation algorithm

^

G such that

^

G(1

k

) = ê where ê is indistinguishable from the encryption key e chosen by G,

and in addition fE

ê

(0)g remains indistinguishable from fE

ê

(1)g even when the entire random

input of

^

G is known.

2. Invertible samplability: this property states that the key generation and oblivious key genera-

tion algorithms G and

^

G should be invertible. That is, we require the existence of an inverting

algorithm who receives any e output by the simulator algorithm S and outputs r such that

^

G(r) = e. (This algorithm may receive the coins used by S in computing e in order to �nd

r.) We also require an algorithm that receives any pair (e; d

i

) for i 2 f0; 1g from the output

of S, and outputs r such that G(r) = (e; d

i

). (As before, this algorithm may receive the coins

used by S.) The idea here is that in order to \explain" the simulator-generated keys as being

generated in a legal way, it must be possible to �nd legal random coin tosses for them.

10

Augmented two-party non-committing encryption protocols exist under either one of the RSA or

the DDH assumptions. The requirements are also ful�lled in the case that public keys are uniformly

10

In its most general form, one can de�ne an invertible sampling algorithm for G that receives any pair (e; d) in

the range of G and outputs r such that G(r) = (e; d). However, we actually only need the inverting algorithm to

work for keys output by the simulator S.
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distributed over some public domain and secret keys are de�ned by the random coins input to G.

See more details in [15, 24].

The protocol for securely realizing F

`

ot

, denoted AOT (for Adaptive Oblivious Transfer) is

presented in Figure 4.3. As in the static case, the protocol is de�ned for the case where each of the

` input values is a single bit.

Protocol AOT

Proceed as follows, on security parameter k and using an augmented non-committing encryption

scheme (G;

^

G;E;D; S).

1. Given input (receiver; sid; i), receiver R runs G(1

k

) to obtain (e; d), and runs

^

G(1

k

) `�1 times

to obtain ê

1

; :::; ê

i�1

; ê

i+1

; :::; ê

`

. Then, R sends (sid; ê

1

; :::; ê

i�1

; e; ê

i+1

; :::; ê

`

) to T .

2. Given input (sender; sid; x

1

; :::; x

`

), and having received (sid; e

1

; :::; e

`

) from R, sender T com-

putes c

j

= E

e

j

(x

j

) for every 1 � j � `, and sends (sid; c

1

; :::; c

`

) to R.

3. Having received (sid; c

1

; : : : ; c

`

) from T , receiverR computes x

i

= D

d

(c

i

) and outputs (sid; x

i

).

Figure 4.3: The adaptive, semi-honest oblivious transfer protocol

Claim 4.4.2 Assume that (G;

^

G;E;D; S) is an augmented non-committing encryption scheme.

Then, Protocol AOT securely realizes F

`

ot

in the presence of semi-honest, adaptive adversaries.

Proof: The main di�erence between this proof and the proof of Claim 4.4.1 is due to the fact that

the real-model adversary A can corrupt parties during (or after) the simulation. When S receives

such a \corrupt" command, it corrupts the ideal-model party and receives its input (and possibly

its output). Given this information, S must produce random coins for this party such that the

simulated transcript generated so far is consistent with the revealed input (and output).

Let A be a semi-honest, adaptive adversary that interacts with parties running the above

protocol. We construct an adversary S in the ideal process for F

`

ot

such that no environment Z

can tell with non-negligible probability whether it is interacting with A and the above protocol or

with S in the ideal process for F

`

ot

. In describing the simulation here, it is helpful to explicitly

consider the ITMs representing the real model parties in the internal interaction. We denote these

parties by

~

T and

~

R. S works as follows:

Simulating the communication with Z: Every input value that S receives from Z is written

on A's input tape (as if coming from A's environment). Likewise, every output value written

by A on its output tape is copied to S's own output tape (to be read by S's environment Z).

Simulating the receiver: We separately describe the simulation for a corrupted and uncorrupted

receiver.

1. Simulation when the receiver is not corrupted: In this case, S needs to simulate the

receiver message. This is done as follows: S runs the encryption simulation algorithm

S(1

k

) independently ` times. For each j, S obtains a tuple (e

j

; c

j

; r

j

0

; r

j

1

; d

j

0

; d

j

1

); see the

explanation above for the meaning of each element in this tuple. Then, S generates

~

R's

message to be (sid; e

1

; : : : ; e

`

) and simulates

~

R sending it to

~

T .
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2. Simulation when the receiver is corrupted: In this case, S holds the input (receiver; sid; i)

of the ideal receiver R and constructs a virtual real-model receiver

~

R as follows. The

contents of the input tape of

~

R is set to (receiver; sid; i). In order to set the contents of

~

R's random tape, S �rst runs the encryption simulation algorithm S(1

k

) independently

` times, obtaining tuples (e

j

; c

j

; r

j

0

; r

j

1

; d

j

0

; d

j

1

). Next, for every j, S uses the invertible

sampling algorithm in order to �nd r

j

so that

^

G(r

j

) = e

j

, where

^

G is the oblivious key

generator. Then, S sets the contents of

~

R's random tape to equal r

1

; : : : ; r

`

.

S passes the internal state of

~

R (including the contents of its input and random tapes)

to A and waits for A to activate

~

R in the simulation. When this occurs, S internally

obtains the message (sid; e

1

; : : : ; e

`

) that

~

R writes on its outgoing message tape, and

externally sends (receiver; sid; i) to F

`

ot

. (We note that for every j 6= i, it holds that

e

j

=

^

G(r

j

) is the same e

j

as generated by S(1

k

). On the other hand, e

i

= G(r

i

), where

G is the standard encryption key generator.)

Simulating the sender: Once again, we separately consider the case that the sender is corrupted

or not corrupted.

1. Simulation when the sender is not corrupted: S simulates

~

T sending (sid; c

1

; : : : ; c

`

)

where the c

i

's were generated from S(1

k

) when simulating the receiver message above.

This is the same whether or not R was corrupted.

2. Simulation when the sender is corrupted: S holds the ideal T 's input (sender; sid; x

1

; : : : ; x

`

)

and constructs a virtual real-model sender

~

T by writing (sender; sid; x

1

; : : : ; x

`

) on its

input tape and a uniformly distributed string on its random tape. Then, as above, S

passesA the internal state of

~

T (consisting of the contents of its input and random tapes).

When A activates

~

T , simulator S externally sends the message (sender; sid; x

1

; : : : ; x

`

)

to F

`

ot

.

Dealing with \corrupt" commands: We assume that any corruption of a party occurs after the

party has sent its protocol message in the simulation. (Otherwise, the corruption essentially

occurs before the protocol begins and the instructions above su�ce.) Now, if S receives a

command from A to corrupt the real-model

~

R, then it corrupts the ideal model R and obtains

its input i and its output x

i

. Given i and x

i

, simulator S passes A the decryption-key d

i

x

i

(and thus the ciphertext c

i

given to R in the simulated sender-message is \decrypted" to x

i

).

Furthermore, for every j 6= i, S runs the invertible sampling algorithm on e

j

in order to �nd

r

j

such that

^

G(r

j

) = e

j

. Finally, S runs the invertible sampling algorithm on e

i

in order to

�nd r

i

such that G(r

i

) = (e

i

; d

i

x

i

). Notice that these two invertible sampling algorithms are

di�erent. S supplies A with the random tape r

1

; : : : ; r

`

for

~

R.

If S receives a command from A to corrupt real-model

~

T , then it �rst corrupts the ideal-

model T and obtains x

1

; : : : ; x

`

. Next, it prepares appropriate randomness to make it appear

that for every j, it holds that c

j

= E

e

j

(x

j

) (where the (c

j

; e

j

) pairs are taken from the

simulated receiver and sender messages). Since the encryption keys are non-committing and

were generated by running S(1

k

), we have that for every 1 � j � ` simulator S has a string

r

x

j

such that c

j

= E

e

j

(x

j

; r

x

j

). Therefore, S writes r

x

1

; : : : ; r

x

`

as

~

T 's random tape.

Output and output delivery: S delivers the output from F

`

ot

to (an uncorrupted) R when A

delivers the message from

~

T to

~

R in the simulation.

As argued in the proof of Claim 4.4.1, it su�ces to show that A's view in the simulation is indis-

tinguishable from its view in a real execution. (Note that in the adaptive case there is a positive



4.4. TWO-PARTY SECURE COMPUTATION FOR SEMI-HONEST ADVERSARIES 75

correctness error. That is, there is non-zero probability that the outputs of the uncorrupted parties

in the real-life interaction will di�er from their outputs in the ideal process. This error probability is

due to the fact that encryption schemes can \fail" with negligible probability. Since the probability

of such an event is negligible, we ignore it here.) The indistinguishability of the views is demon-

strated using the properties of the augmented non-committing encryption scheme. In particular, the

non-committing encryption keys, ciphertexts and decommitment strings are all indistinguishable

from those appearing in a real execution. Furthermore, by the oblivious key-generation algorithm,

S supplies only a single decryption key (for the i

th

encryption key) and this is what a real receiver

would also have. (More precisely, given an environment that distinguishes between the real-life and

ideal interactions we construct an adversary that breaks either the security of the non-committing

encryption or the oblivious key generation property. We omit further details.)

4.4.2 The General Construction

We are now ready to show how to securely realize any (adaptively) well-formed two-party function-

ality in the F

ot

-hybrid model, in the semi-honest case. (Adaptively well-formed functionalities are

de�ned in Section 4.3.3. Two-party functionalities are functionalities that interact with the adver-

sary, plus at most two parties.) The construction is essentially that of [52, 44], although as we have

mentioned, our protocol is actually more general in that it also deals with reactive functionalities.

We begin by formally restating Proposition 4.2.1:

Proposition 4.4.3 (Proposition 4.2.1 { formally restated): Assume that trapdoor permutations

exist. Then, for any two-party well-formed ideal functionality F , there exists a non-trivial protocol

that securely realizes F in the presence of semi-honest, static adversaries. Furthermore, if two-party

augmented non-committing encryption protocols exist, then for any two-party adaptively well-formed

ideal functionality F , there exists a non-trivial protocol that securely realizes F in the presence of

semi-honest, adaptive adversaries.

Recall that a protocol is non-trivial if the ideal-process adversary delivers all messages from the

functionality to the parties whenever the real-life adversary delivers all messages and doesn't corrupt

any parties. This restriction is included to rule out meaningless protocols such as the protocol that

never generates output. (See Section 4.3.1 for more discussion.)

The construction. Let F be an ideal two-party functionality and let P

1

and P

2

be the partic-

ipating parties. The �rst step in constructing a protocol that securely realizes F is to represent

(the shell of) F via a family C

F

of boolean circuits. That is, the m

th

circuit in the family describes

an activation of F when the security parameter is set to m. Following [52, 44], we use arithmetic

circuits over GF(2) where the operations are addition and multiplication modulo 2.

For simplicity we assume that the input and output of each party in each activation has at most

m bits, the number of random bits used by F in all activations is at most m, and at the end of

each activation the local state of F can be described in at most m bits. Consequently the circuit

has 3m input lines and 3m output lines, with the following interpretation. In each activation, only

one party has input. Therefore, m of the input lines are allocated for this input. The other 2m

input lines describe F 's m random coins and the length-m internal state of F at the onset of an

activation. The 3m output lines are allocated as follows: m output lines for the output of each of

the two parties and m output lines to describe the state of F following an activation. The circuit

is constructed so that each input from the adversary is set to 0, and outputs to the adversary are
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ignored.

11

We note that if the input or output of a party in some activation is less than m bits

then this is encoded in a standard way. Also, each party initially sets its shares of the state of F

to 0 (this denotes the empty state).

Protocol �

F

(for securely realizing F): We state the protocol for an activation in which

P

1

sends a message to F ; the case where P

2

sends the message is easily derived (essentially by

exchanging the roles of P

1

and P

2

throughout the protocol). It is assumed that both parties hold

the same session identi�er sid as auxiliary input. When activated with input (sid; v) within P

1

,

the protocol �rst sends a message to the partner P

2

, asking it to participate in a joint evaluation of

the m

th

circuit in C

F

. Next, P

1

and P

2

engage in a gate-by-gate evaluation of C

F

, on inputs that

represent the incoming message v from P

1

, the current internal state of F , and a random string.

This is done as follows.

1. Input Preparation Stage:

� Input value: Recall that v is P

1

's input for this activation. P

1

�rst pads v to be of length

exactlym (using some standard encoding). Next P

1

\shares" its input. That is, P

1

chooses

a random string v

1

2

R

f0; 1g

m

and de�nes v

2

= v

1

� v. Then, P

1

sends (sid; v

2

) to P

2

and

stores v

1

.

� Internal state: At the onset of each activation, the parties hold shares of the current

internal state of F . That is, let c denote the current internal state of F , where jcj = m.

Then, P

1

and P

2

hold c

1

; c

2

2 f0; 1g

m

, respectively, such that c

1

and c

2

are random under

the restriction that c = c

1

� c

2

. (In the �rst activation of F , the internal state is empty

and so the parties' shares both equal 0.)

� Random coins: Upon the �rst activation of F only, parties P

1

and P

2

choose random

strings r

1

2

R

f0; 1g

m

and r

2

2

R

f0; 1g

m

, respectively. These constitute shares of the

random coins r = r

1

� r

2

to be used by C

F

. We stress that r

1

and r

2

are chosen upon

the �rst activation only. The same r

1

and r

2

are then used for each subsequent activation

of F (r

1

are r

2

are kept the same because the random tape of F does not change from

activation to activation).

At this point, P

1

and P

2

hold (random) shares of the input message to F , the internal state

of F and the random tape of F . That is, they hold shares of every input line into C

F

. Note

that the only message sent in the above stage is the input share v

2

sent from P

1

to P

2

.

2. Circuit Evaluation: P

1

and P

2

proceed to evaluate the circuit C

F

in a gate-by-gate manner.

Let � and � denote the values of the two input lines to a given gate. Then P

1

holds bits �

1

; �

1

and P

2

holds bits �

2

; �

2

such that � = �

1

+ �

2

and � = �

1

+ �

2

. The gates are computed as

follows:

� Addition gates: If the gate is an addition gate, then P

1

locally sets its share of the output

line of the gate to be 

1

= �

1

+ �

1

. Similarly, P

2

locally sets its share of the output line

of the gate to be 

2

= �

2

+ �

2

. (Thus 

1

+ 

2

= �+ �.)

� Multiplication gates: If the gate is a multiplication gate, then the parties use F

4

ot

in order

to compute their shares of the output line of the gate. That is, the parties wish to compute

random shares 

1

and 

2

such that 

1

+ 

2

= � � � = (�

1

+�

2

)(�

1

+�

2

). For this purpose,

11

Thus, we e�ectively prevent the ideal-model adversary from utilizing its capability of sending and receiving

messages. This simpli�es the construction, and only strengthens the result.
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P

1

chooses a random bit 

1

2

R

f0; 1g, sets its share of the output line of the gate to 

1

,

and de�nes the following table:

Value of (�

2

; �

2

) Receiver input i Receiver output 

2

(0,0) 1 o

1

= 

1

+ �

1

� �

1

(0,1) 2 o

2

= 

1

+ �

1

� (�

1

+ 1)

(1,0) 3 o

3

= 

1

+ (�

1

+ 1) � �

1

(1,1) 4 o

4

= 

1

+ (�

1

+ 1) � (�

1

+ 1)

Having prepared this table, P

1

sends the oblivious transfer functionality F

4

ot

the message

(sender; sid � j; o

1

; o

2

; o

3

; o

4

), where this is the j

th

multiplication gate in the circuit and �

denotes concatenation (the index j is included in order to ensure that the inputs of the

parties match to the same gate). P

2

sets its input value i for F

4

ot

according to the above

table (e.g., for �

2

= 1 and �

2

= 0, P

2

sets i = 3). Then, P

2

sends (receiver; sid � j; i) to

F

4

ot

and waits to receive (sid � j; 

2

) from F

4

ot

. Upon receiving this output, P

2

sets 

2

to

be its share of the output line of the gate. Thus, we have that 

1

+

2

= (�

1

+�

1

)(�

2

+�

2

)

and the parties hold random shares of the output line of the gate.

3. Output Stage: Following the above stage, the parties P

1

and P

2

hold shares of all the output

lines of the circuit C

F

. Each output line of C

F

is either an output addressed to one of the

parties P

1

and P

2

, or belongs to the internal state of C

F

after the activation. The activation

concludes as follows:

� P

1

's output: P

2

sends P

1

all of its shares in P

1

's output lines. P

1

reconstructs every bit of

its output value by adding the appropriate shares. (If the actual output generated by F

has less than the full m bits then this will be encoded in the output in a standard way.)

� P

2

's output: Likewise, P

1

sends P

2

all of its shares in P

2

's output lines; P

2

reconstructs

the value and writes it on its output tape.

� S's output: Recall that the outputs of F to S are ignored by C

F

. Indeed, the protocol

does not provide the real-life adversary with any information on these values. (This only

strengthens the security provided by the protocol.)

� Internal state: Finally, P

1

and P

2

both store the shares that they hold for the internal

state lines of C

F

. (These shares are to be used in the next activation.)

Recall that there is no guarantee on the order of message delivery, so messages may be delivered

\out of order". However, to maintain correctness, the protocol must not start some evaluation

of C

F

before the previous evaluation of C

F

has completed. Furthermore, evaluating some gate

can take place only after the shares of the input lines of this gate are known. Thus, in order to

guarantee that messages are processed in the correct order, a tagging method is used. Essentially,

the aim of the method is to assign a unique tag to every message sent during all activations of F .

Thus, the adversary can gain nothing by sending messages in di�erent orders. This is achieved in

the following way. Recall that both parties hold the same session-identi�er sid. Then, in activation

i, the parties use the session-identi�er sid � i. They also attach a tag identifying the stage which

the message sent belongs to. Thus, for example, the message v

2

sent by P

1

in the input stage of

the `

th

activation is tagged with hsid � ` � inputi. Likewise, the j

th

call to F

ot

in the i

th

activation

is referenced with the session identi�er sid � ` � j (and not just sid � j as described above). Now,

given the above tagging method, the ordering guarantees can be dealt with in standard ways by

keeping messages that arrive too early in appropriate bu�ers until they become relevant (where the
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time that a message becomes relevant is self-evident from the labelling). By the above, it makes

no di�erence whether or not the adversary delivers the messages according to the prescribed order.

From here on we therefore assume that all messages are delivered in order. We also drop explicit

reference to the additional tagging described here. This completes the description of �

F

.

We now prove that the above construction securely realizes any adaptively well-formed functionality.

(We stress that for the case of static adversaries, �

F

securely realizes any well-formed functionality,

and not just those that are adaptively well-formed. Nevertheless, here we prove the claim only for

adaptively well-formed functionalities and adaptive adversaries. The static case with security for

any well-formed functionality is easily derived.)

Notice that each activation of �

F

is due to an input sent by one of the participating parties.

This implicitly assumes that the only messages that the functionality receives are from the parties

themselves. This is indeed the case for well-formed functionalities (or, more accurately, the shells

of such functionalities). However, recall that in general, functionalities receive noti�cation of the

parties that are corrupted. The protocol does not (and cannot) deal with such messages and

therefore does not securely realize functionalities that are not well-formed.

Claim 4.4.4 Let F be a two-party adaptively well-formed functionality. Then, protocol �

F

securely

realizes F in the F

ot

-hybrid model, in the presence of semi-honest, adaptive adversaries.

Note that the claim holds unconditionally. In fact, it holds even if the environment and the

adversary are computationally unbounded. (Of course, computational assumptions are required

for securely realizing the oblivious transfer functionality.) The proof below deals with the security

of reactive functionalities, in the presence of adaptive adversaries. This proof is signi�cantly more

involved than an analogous claim regarding non-reactive functionalities and static adversaries. For

a warm-up, we refer the reader unfamiliar with this more simple case to [44, Sec. 2.2.4].

Proof: First note that protocol �

F

\correctly" computes F . That is, in each activation, if the

inputs of both parties in the real-life model are identical to their inputs in the ideal process, then the

outputs of the uncorrupted parties are distributed identically as their outputs in the ideal process.

This fact is easily veri�ed and follows inductively from the property that the parties always hold

correct shares of the lines above the gates computed so far. (The base case of the induction relates

to the fact that the parties hold correct shares of the input and internal state lines. In addition,

the lines corresponding to F 's random tape contain uniformly distributed values.)

We now proceed to show that �

F

securely realizes F . Intuitively, the security of protocol �

F

is

based on the fact that all the intermediate values seen by the parties are uniformly distributed. In

particular, the shares that each party receives of the other party's input are random. Furthermore,

every output that a party receives from an oblivious transfer is masked by a random bit chosen by

the sender. Throughout the proof, we denote by x and y the outputs of P

1

and P

2

, respectively.

Let A be a semi-honest, adaptive adversary that interacts with parties running Protocol �

F

in the F

ot

-hybrid model. We construct an adversary S for the ideal process for F such that no

environment Z can tell whether it interacts with A and �

F

in the F

ot

-hybrid model, or with S in

the ideal process for F . S internally runs a simulated copy of A, and proceeds as follows:

Simulating the communication with Z: Every input value that S receives from Z is written

on A's input tape (as if coming from A's environment). Likewise, every output value written

by A on its output tape is copied to S's own output tape (to be read by S's environment Z).

Simulation of the input stage: We �rst describe the simulation in the case that P

1

is corrupted

(before the protocol begins). In this case, S holds the contents of P

1

's input tape (sid; v) and
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therefore externally sends the value to the ideal functionality F . Now, the input stage of �

F

consists only of P

1

sending a random string v

2

to P

2

. In the case that P

1

is corrupted, this

string is already determined and thus no further simulation is required. In the case that P

1

is not corrupted, S chooses a uniformly distributed string v

2

and simulates P

1

sending this

string to P

2

.

Simulation of the circuit evaluation stage: The computation of addition gates consists only

of local computation and therefore requires no simulation. In contrast, each multiplication

gate is computed using an ideal call to F

ot

, where P

1

plays the sender and P

2

plays the

receiver. We describe the simulation of these calls to F

ot

separately for each corruption case:

1. Simulation when both P

1

and P

2

are not corrupted: In this case, the only message seen

by A in the evaluation of the j

th

gate is the (sid � j) message from the corresponding

copy of F

ot

. Thus, S simulates this stage by merely simulating for A an (sid�j) message

sent from F

ot

to the recipient P

2

.

2. Simulation when P

1

is corrupted and P

2

is not corrupted: The simulation in this case

is the same as in the previous (P

1

obtains no output from F

ot

and therefore A receives

(sid � j) only).

3. Simulation when P

1

is not corrupted and P

2

is corrupted: The receiver P

2

obtains a

uniformly distributed bit 

2

as output from each call to F

ot

. Therefore, S merely

chooses 

2

2

R

f0; 1g and simulates P

2

receiving 

2

from F

ot

.

4. Simulation when both P

1

and P

2

are corrupted: Since all input and random tapes are

already de�ned when both parties are corrupted, simulation is straightforward.

Simulation of the output stage: S simulates P

1

and P

2

sending each other their shares of the

output lines. As above, we separately describe the simulation for each corruption case:

1. Simulation when both P

1

and P

2

are not corrupted: In this case, all A sees is P

1

and P

2

sending each other random m-bit strings. Therefore, S chooses y

1

; x

2

2

R

f0; 1g

m

and

simulates P

1

sending y

1

to P

2

and P

2

sending x

2

to P

1

(y

1

is P

1

's share in P

2

's output

y and vice versa for x

2

).

2. Simulation when P

1

is corrupted and P

2

is not corrupted: First, notice that the output

shares of a corrupted party are already de�ned (because A holds the view of any cor-

rupted party and this view de�nes the shares in all output lines). Thus, in this case,

the string sent by P

1

in the output stage is predetermined. In contrast, P

2

's string is

determined as follows: P

1

is corrupted and therefore S has P

1

's output x. Furthermore,

P

1

's shares x

1

in its own output lines are �xed (because P

1

is corrupted). S therefore

simulates P

2

sends x

2

= x�x

1

to P

1

(and so P

1

reconstructs its output to x, as required).

3. Simulation when P

1

is not corrupted and P

2

is corrupted: The simulation here is the

same as in the previous case (while reversing the roles of P

1

and P

2

).

4. Simulation when both P

1

and P

2

are corrupted: The shares of all output lines of both

parties are already determined and so simulation is straightforward.

Simulation of the �rst corruption: We now show how S simulates the �rst corruption of a

party. Notice that this can occur at any stage after the simulation described above begins.

(If the party is corrupted before the execution begins, then the simulation is according to

above.) We describe the corruption as if it occurs at the end of the simulation; if it occurs
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earlier, then the simulator follows the instructions only until the appropriate point. We

di�erentiate between the corruptions of P

1

and P

2

:

1. P

1

is the �rst party corrupted: Upon corrupting P

1

, simulator S receives P

1

's input value

v. S proceeds by generating the view of P

1

in the input preparation stage. Let v

2

be

the message that P

1

sent P

2

in the simulation of the input stage by S. Then, S sets P

1

's

shares of its input to v

1

, where v

1

� v

2

= v. Furthermore, S sets P

1

's m-bit input r

1

to

the lines corresponding to C

F

's random tape to be a uniformly distributed string, and

P

1

's shares of the internal state of F to be a random string c

1

2

R

f0; 1g

m

. (Actually,

if this is the �rst activation of C

F

, then c

1

is set to 0 to denote the empty state.) In

addition, S sets P

1

's random tape to be a uniformly distributed string of the appropriate

length for running �

F

. (Notice that this random tape de�nes the bits 

1

that P

1

chooses

when de�ning the oblivious transfer tables for the multiplication gates; recall that these

bits then constitute P

1

's shares of the output lines from these gates.) In the case that

P

1

is corrupted before the output stage, this actually completes the simulation of P

1

's

view of the evaluation until the corruption took place. This is due to the fact that P

1

receives no messages during the protocol execution until the output stage (P

1

is always

the oblivious transfer sender).

We now consider the case that P

1

is corrupted after the output stage is completed. In

this case the output messages x

2

and y

1

of both parties have already been sent. Thus,

we must show that S can e�ciently compute a random tape for P

1

that is consistent

with these messages. For simplicity of exposition, we assume that only multiplication

gates, and no addition gates, lead to output lines; any circuit can be easily modi�ed to

ful�ll this requirement. Now, notice that the random coin 

1

chosen by P

1

in any given

multiplication gate is independent of all other coins. Therefore, the simulated output

messages x

2

; y

1

that S already sent only inuence the coins of multiplication gates that

lead to output lines; the coins of all other multiplication gates can be chosen uniformly

and independently of x

2

; y

1

. The coins for multiplication gates leading to output lines

are chosen as follows: For the i

th

output line belonging to P

2

's output, S sets P

1

's coin



1

to equal the i

th

bit of y

1

. (Recall that P

1

's random coin 

1

equals its output from the

gate; therefore, P

1

's output from the gate equals its appropriate share in P

2

's output,

as required.) Furthermore, for the i

th

output line belonging to P

1

's output, S sets P

1

's

random coin 

1

to equal the i

th

bit of x � x

2

. (Therefore, P

1

's reconstructed output

equals x, as required; furthermore, this reconstructed value is independent from the

intermediary information learned by the adversary.)

2. P

2

is the �rst party corrupted: Upon the corruption of P

2

, simulator S receives P

2

's

output y (P

2

has no input). Then, S must generate P

2

's view of the execution. S begins

by choosing r

2

2

R

f0; 1g

m

and setting P

2

's input to the lines corresponding to C

F

's

random tape to r

2

. In addition, it chooses the shares of the internal state of F to be

a random string c

2

. (As above, in the �rst activation of C

F

, the string c

2

is set to 0.)

Next, notice that from this point on, P

2

is deterministic (and thus it needs no random

tape). Also, notice that the value that P

2

receives in each oblivious transfer is uniformly

distributed. Therefore, S simulates P

2

receiving a random bit for every oblivious transfer

(S works in this way irrespective of when P

2

was corrupted). If this corruption occurs

before the output stage has been simulated, then the above description is complete (and

accurate). However, if the corruption occurs after the simulation of the output stage,

then the following changes must be made. First, as above, the random bits chosen for
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P

2

's outputs from the oblivious transfers de�ne P

2

's shares in all the output lines. Now,

if the output stage has already been simulated then the string x

2

sent by P

2

to P

1

and

the string y

1

sent by P

1

to P

2

have already been �xed. Thus, as in the previous case, S

chooses the output bits of the oblivious transfers so that they are consistent with these

strings. In particular, let y be P

2

's output (this is known to S since P

2

is corrupted)

and de�ne y

2

= y � y

1

. Then, S de�nes P

2

's output-bit of the oblivious transfer that is

associated with the i

th

bit of its shares of its own output to be the i

th

bit of y

2

. Likewise,

the output from the oblivious transfer associated with the i

th

bit of P

2

's share of P

1

's

output is set to equal the i

th

bit of x

2

.

We note that in the above description, S generates the corrupted party's view of the current

activation. In addition, it must also generate the party's view for all the activations in

the past. Observe that the only dependence between activations is that the shares of the

state string input into a given activation equal the shares of the state string output from the

preceding activation. Thus, the simulation of prior activations is exactly the case of simulation

where the corruption occurs after the output stage has been completed. The only di�erence

is that S de�nes the shares of the state string so that they are consistent between consecutive

activations.

Simulation of the second corruption: As before, we di�erentiate between the corruptions of

P

1

and P

2

:

1. P

2

is the second party corrupted: Upon corrupting P

2

, simulator S obtains P

2

's output

in this activation and all its inputs and outputs from previous activations. Furthermore,

since the functionality is adaptively well-formed, S obtains the random tape used by the

ideal functionality F in its computation. Next, S computes the internal state of F in

this activation, based on all the past inputs, outputs and the internal random tape of F

(this can be computed e�ciently). Let c be this state string and let r equal F 's m-bit

random tape. Then, P

2

sets c

2

such that c = c

1

� c

2

, where c

1

was randomly chosen

upon P

1

's corruption. (S also makes sure that the output state information from the

previous execution equals the input state information from this execution. This is easily

accomplished because output gates are always immediately preceded by multiplication

gates, and so independent random coins are used.) Similarly, S sets r

2

= r

1

� r, where

r equals F 's random tape and r

1

equals the random string chosen upon P

1

's corruption

(for simulating P

1

's share of the random tape of C

F

).

We now proceed to the rest of the simulation. In the case we are considering here,

P

1

has already been corrupted. Therefore, all the tables for the oblivious transfers have

already been de�ned. It thus remains to show which values P

2

receives from each of these

gate evaluations. However, this is immediately de�ned by P

2

's input and the oblivious

transfer tables. Thus, all the values received by P

2

from this point on, including the

output values, are fully de�ned, and S can directly compute them.

2. P

1

is the second party corrupted: The simulation by S here begins in the same way as

when P

2

is the second party corrupted. That is, S corrupts P

1

and obtains the random

tape of F . Then, S de�nes the appropriate state share string c

1

, and random tape

share string r

1

(in the same way as above). In addition, S obtains P

1

's input value v

and de�nes the appropriate share v

1

(choosing it so that v

1

� v

2

= v). This de�nes

all the inputs into the circuit C

F

. Given this information, S constructs the tables for

all the oblivious transfers. Recall that P

2

is already corrupted. Therefore, the bits
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that it receives from each oblivious transfer are already de�ned. Now, for each gate

(working from the inputs to the outputs), S works as follows. Let 

2

be the output that

P

2

received from some oblivious transfer. Furthermore, assume that S holds the input

shares of both parties for the gate in question (this can be assumed because S works

bottom-up, from the input lines to the output lines). Then, S checks what the real

(unmasked) output bit of the gate should be, let this value be . Given that P

2

received



2

and the output value should be , simulator S sets P

1

's random-bit in de�ning this

table to be 

1

= 

2

� . S continues in this way for all the gates evaluated in the

simulation before P

1

was corrupted. We note that if the corruption occurred after the

output stage, then the output strings sent are de�ned by the outputs of the gates, as

computed above.

Output and output delivery: S delivers the output from F to (an uncorrupted) party after A

delivers the corresponding output message to the party in the simulation. This takes care of

the outputs of corrupted parties. For a corrupted party P

i

(i 2 f1; 2g), simulator S copies

the contents of the simulated P

i

's output tape (as written by A) onto the output tape of the

ideal process party P

i

.

Analysis of S. We show that no environment Z can distinguish the case where it interacts with

S and F in the ideal process from the case where it interacts with A and �

F

in the F

ot

-hybrid

model. In fact, we demonstrate that Z's view is distributed identically in the two interactions.

The proof proceeds by induction on the number of activations in a run of Z. Recall that in each

activation, Z reads the output tapes of P

1

, P

2

, and the adversary, and then activates either P

1

, P

2

or the adversary with some input value. (One should not confuse activations of a party, as is the

intention here, with activations of the functionality and protocol.) We actually prove a somewhat

stronger claim: Let �

r

i

denote the random variable describing the state of Z at the onset of the

i

th

activation in an interaction with adversary A and parties running �

F

in the F

ot

-hybrid model,

and let �

r

i

denote the random variable describing the state of A at this point in the interaction.

Let �

i

i

denote the random variable describing the state of Z at the onset of its i

th

activation in an

interaction with adversary S in the ideal process for functionality F , and let �

i

i

denote the random

variable describing the state of the simulated A within S at this point in the interaction. We show

that for all i, the pairs (�

r

i

; �

r

i

) and (�

i

i

; �

i

i

) are identically distributed. More precisely, Let i > 0.

Then, for any values a

1

; a

2

; b

1

; b

2

we show:

Pr

h

(�

r

i+1

; �

r

i+1

) = (b

1

; b

2

)

�

�

�

(�

r

i

; �

r

i

) = (a

1

; a

2

)

i

= Pr

h

(�

i

i+1

; �

i

i+1

) = (b

1

; b

2

)

�

�

�

(�

i

i

; �

i

i

) = (a

1

; a

2

)

i

(4.3)

That is, assume that the states of Z and A at the onset of some activation of Z have some arbitrary

(�xed) values a

1

and a

2

, respectively. Then the joint distribution of the states of Z and A at the

onset of the next activation of Z is the same regardless of whether we are in the \real interaction"

with �

F

, or in the ideal process. (In the interaction with �

F

the probability is taken over the

random choices of the uncorrupted parties. In the ideal process the probability is taken over the

random choices of S and F .)

Asserting Eq. (4.3), recall that in the i

th

activation Z �rst reads the output tapes of P

1

, P

2

,

and the adversary. (We envision that these values are written on a special part of the incoming

communication tape of Z, and are thus part of its state �

r

i

= �

i

i

.) Next, Z either activates some

uncorrupted party with some input x, or activates the adversary with input x. We treat these cases

separately:
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Z activates an uncorrupted party with some input value x. In this case, in the interaction

with �

F

, the activated party sends out a request to the other party to evaluate an activation

of C

F

, plus a random share of x. This message becomes part of the state of A (who sees

all messages sent). In the ideal process, S (who sees that the party sent a message to F)

generates a simulated message for A with the same distribution. (Recall that this message is

just a uniformly distributed string.)

Z activates the adversary with some input value x. Recall that in the interaction with �

F

adversary A is now activated, reads x, and in addition has access to the messages sent by

the parties and by the various copies of F

ot

since its last activation. (We envision that this

information is written on A's incoming communication tape.) Next, A can either deliver

a message to some party, modify the input/output tapes of some already corrupted party

or corrupt a currently honest party. Finally, A writes some value on its output tape and

completes its activation. In the ideal process, S forwards x to A and activates A. Next,

S provides A with additional information representing the messages sent by the parties and

also, in case of party corruption, the internal state of the corrupted party.

We proceed in four steps. First, we show that the contents of A's incoming communication

tape has the same distribution in both interactions. Second, we show that the e�ect of message

delivery on the states of A and Z is the same in both interactions. Third, we demonstrate

that the information learned by A upon corrupting a party has the same distribution in

both interactions. Finally, we demonstrate that A's view regarding the states of the already

corrupted parties has the same distribution in both interactions.

New messages seen by A. Each message seen by A is of one of the following possible

types:

� An input-sharing message as described above: As mentioned above, in this case in both

interactions A sees an m-bit long random string, representing a share of the sender's

new input value.

� A message from a party to some copy of F

ot

: In this case, in both interactions, A only

gets noti�ed that some message was sent from the party to the copy of F

ot

.

� A message from some copy of F

ot

to P

2

: In both interactions, if P

2

is uncorrupted then

A does not see the contents of this message. If P

2

is corrupted then this message consists

of a single random bit that is independent from the states of A and Z so far. (This bit

is P

2

's share of the corresponding line of the circuit.)

� An output message from one party to another: Here one party sends its share of some

output line to the other party (who is designated to get the value of this line.) In both

interactions, if the recipient party is uncorrupted then this message consists of a single

random bit � that is independent from the states of A and Z so far. If the recipient

is corrupted then A already has �, the recipient's share of that line. In the interaction

with �

F

, the value  = ��� is the value of this output line in C

F

. In the ideal process,

 = � � � is the corresponding value generated by F . The distribution of c (given the

states of A and Z so far) is identical in both cases; this is the case because C

F

correctly

represents an activation of F .

Messages delivered by A. If A delivers an output message to some party in an execution

of �

F

, then this party outputs the (correct) value derived from the corresponding output lines

of C

F

. This output value, 

r

, becomes part of the state of Z (to be read by Z at the onset of
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its next activation.) If A delivers an output message to some party in the ideal process, then

S (who runs A) delivers the corresponding message from F to this party. Consequently, this

party outputs the value, 

i

, sent by F . Since C

F

correctly represents the computation of F ,

we have that 

r

and 

i

are identically distributed.

If A delivers to some party P

i

a message that is not an output message then P

i

outputs

nothing. (P

i

may send other messages, but these messages will only become part of the state

of A in its next activation. This next activation of A occurs after the next activation of Z.)

Corruption of the �rst party. In the interaction with �

F

, upon corrupting the �rst

party A sees all the past inputs and outputs of this party. In addition, it sees all the shares

of this party from the input lines, the random input lines, the internal state input lines,

and all the internal lines of the circuit C

F

; these shares are all random values distributed

independently from the states of A and Z so far. In the ideal process, S provides A with

identically distributed information.

Corruption of the second party. In the interaction with �

F

, upon corrupting the second

party A sees the same information as in the �rst corruption, namely all the past inputs and

outputs of this party, as well as the shares of this party from the input lines, the random input

lines, the internal state input lines, and all the internal lines of the circuit C

F

. Here, however,

this information determines the actual values of all types of input lines to the circuit, plus

the values of all the internal lines of the circuit. (The values of the random input lines to

the circuit are uniformly distributed. All other lines are uniquely determined by the states

of Z and A at this point.) In the ideal process, S provides A with identically distributed

information. (This can be seen from the code of S.)

This completes the analysis of S and the proof of the claim.

Using the composition theorem, Proposition 4.4.3 follows from Claims 4.4.1, 4.4.2, and 4.4.4.

4.5 Universally Composable Commitments

We describe our new universally-composable non-interactive commitment scheme. Our construction

is in the common reference string model, and assumes only the existence of trapdoor permutations.

(If the common reference string must come from the uniform distribution, then we actually re-

quire trapdoor permutations with dense public descriptions [27].) UC commitment schemes are

protocols that securely realize the multi-session ideal commitment functionality F

mcom

presented

in Figure 4.4. Note that F

mcom

is in fact a re-formulation of

^

F

com

, the multi-session extension of

the single-session ideal commitment functionality, F

com

, presented in [16].

Informally speaking, in order to achieve universal composability against adaptive adversaries, a

commitment scheme must have the following two properties:

� Polynomial equivocability: the simulator (i.e., the adversary in the ideal process) should be able

to produce many commitments for which it can decommit to both 0 and 1, using the same

reference string. (An additional property is actually needed for adaptive security; see below.)

Of course, the real committer must be able to decommit to only a single value (as required by

the binding property of commitment schemes).

� Simulation extractability: the simulator should be able to extract the contents of any valid com-

mitment generated by the adversary, even after having supplied an adversary with an arbitrary

number of equivocable commitments.
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Functionality F

mcom

F

mcom

proceeds as follows, running with parties P

1

; : : : ; P

n

and an adversary S:

� Commit Phase: Upon receiving a message (commit; sid; ssid; P

i

; P

j

; b) from P

i

, where b 2 f0; 1g,

record the tuple (ssid; P

i

; P

j

; b) and send the message (receipt; sid; ssid; P

i

; P

j

) to P

j

and S. Ignore

any future commit messages with the same ssid from P

i

to P

j

.

� Reveal Phase: Upon receiving a message (reveal; sid; ssid) from P

i

: If a tuple (ssid; P

i

; P

j

; b)

was previously recorded, then send the message (reveal; sid; ssid; P

i

; P

j

; b) to P

j

and S. Otherwise,

ignore.

Figure 4.4: The ideal commitment functionality

We remark that in the equivocable commitment protocols of [28, 29] each copy of the reference string

can be used for only a single commitment. Furthermore, they are not extractable. In contrast, [16]

show how to use a single copy of the reference string for multiple commitments (although they rely

on speci�c cryptographic assumptions).

We describe our construction in phases. First we describe a new non-interactive variant of the

Feige-Shamir trapdoor commitment scheme [36], which is at the heart of our construction. Then

we show how to transform this scheme into one that is universally composable.

Underlying standard commitment. In our construction we use a non-interactive, perfectly

binding commitment scheme with pseudorandom commitments; denote this scheme by Com. An

example of such a scheme is the standard non-interactive commitment scheme based on a one-way

permutation f and a hard-core predicate b of f . In order to commit to a bit � in this scheme,

one computes Com(�) = hf(U

k

); b(U

k

) � �i, where U

k

is the uniform distribution over f0; 1g

k

.

The Com scheme is computationally secret and produces pseudorandom commitments: that is, the

distribution ensembles fCom(0)g, fCom(1)g, and fU

k+1

g are all computationally indistinguishable.

Non-interactive Feige-Shamir trapdoor commitments. We briey describe a non-interactive

version of the Feige-Shamir trapdoor commitment scheme [36], which is based on the zero-knowledge

proof for Hamiltonicity of Blum [11]. (We are able to obtain a non-interactive version of this scheme

by utilizing the common reference string.) First, we obtain a graph G (with q nodes), so that it is

hard to �nd a Hamiltonian cycle in G within polynomial-time. This is achieved as follows: choose

x 2

R

f0; 1g

k

and compute y = f(x), where f is a one-way function. Then, use the reduction of

the language fy j 9x s:t: y = f(x)g to that of Hamiltonicity, to obtain a graph G so that �nding a

Hamiltonian cycle in G is equivalent to �nding the preimage x of y. The one-wayness of f implies

the di�culty of �nding a Hamiltonian cycle in G. This graph G, or equivalently the string y, is

placed in the common reference string accessible by both parties. Now, in order to commit to 0,

the committer commits to a random permutation of G using the underlying commitment scheme

Com (and decommits by revealing the entire graph and the permutation). In order to commit to 1,

the committer commits to a graph containing a randomly labeled q-cycle only (and decommits

by opening this cycle only). Note that this commitment scheme is binding because the ability to

decommit to both 0 and 1 implies that the committer knows a Hamiltonian cycle in G. The impor-

tant property of the [36] scheme that we use here is equivocability (or what they call the trapdoor

property). That is, given a Hamiltonian cycle in G, it is possible to generate commitments that

are indistinguishable from legal ones, and yet have the property that one can decommit to both a 0
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and a 1. In particular, after committing to a random permutation of G, it is possible to decommit

to 0 in the same way as above. However, it is also possible to decommit to 1 by only revealing the

(known) Hamiltonian cycle in G.

Adaptively secure commitments. We proceed to describe our �rst step for obtaining adaptive

security. In general, the following additional property is required of the simulator: Let c be a

commitment produced by the simulator who knows a Hamiltonian cycle in G. Then, for any

b 2 f0; 1g, the simulator should be able to produce a random string r

b

, so that the honest committer,

given input b and random tape r

b

, outputs the commitment c. Thus, the simulator can provide an

\explanation" of its actions, as if it were an honest committer. We note that the [36] scheme does

not have this property.

The adaptively secure scheme, denoted aHC (for adaptive Hamiltonian Commitment), di�ers

from [36] in the way commitments are generated. That is:

� To commit to a 0, the sender picks a random permutation � of the nodes of G, and commits to

the entries of the adjacency matrix of the permuted graph one by one, using Com. To decommit,

the sender sends � and decommits to every entry of the adjacency matrix. The receiver veri�es

that the graph it received is �(G). (This is the same as in the [36] scheme.)

� To commit to a 1, the sender chooses a randomly labeled q-cycle, and for all the entries in the

adjacency matrix corresponding to edges on the q-cycle, it uses Com to commit to 1 values.

For all the other entries, it simply produces random values from U

k+1

(for which it does not

know the decommitment). To decommit, the sender opens only the entries corresponding to the

randomly chosen q-cycle in the adjacency matrix. (This is the point where our scheme di�ers

to that of [36]. That is, in [36] the edges that are not on the q-cycle are sent as commitments

to 0. Here, random strings are sent instead.)

By the above description, the length of the random string used in order to commit to 0 is di�erent

from the length of the random string used in order to commit to 1. Nevertheless, we pad the

lengths so that they are equal (the reason why this is needed will be explained below). We denote by

aHC(b; r) a commitment of the bit b using randomness r, and by aHC(b) the distribution aHC(b;U

jrj

).

This commitment scheme has the property of being computationally secret; i.e., the distribution

ensembles faHC(0)g and faHC(1)g are computationally indistinguishable for any graph G. Also,

given the opening of any commitment to both a 0 and 1, one can extract a Hamiltonian cycle in G.

Therefore, the committer cannot decommit to both 0 and 1, and the binding property holds. Finally,

as with the scheme of [36], given a Hamiltonian cycle in G, a simulator can generate a commitment

to 0 and later open it to both 0 and 1. (This is because the simulator knows a simple q-cycle in G

itself.) Furthermore, in contrast to [36], here the simulator can also produce a random tape for the

sender, explaining the commitment as a commitment to either 0 or 1. Speci�cally, the simulator

generates each commitment string c as a commitment to 0. If, upon corruption of the sender, the

simulator has to demonstrate that c is a commitment to 0 then all randomness is revealed. To

demonstrate that c was generated as a commitment to 1, the simulator opens the commitments

to the edges in the q-cycle and claims that all the unopened commitments are merely uniformly

chosen strings (rather than commitments to the rest of G). This can be done since commitments

produced by the underlying commitment scheme Com are pseudorandom. This therefore gives us

polynomial equivocability, where the same reference string can be reused polynomially-many times.

Achieving simulation extractability. As discussed above, the commitment scheme aHC has

the equivocability property, as required. However, a UC commitment scheme must also have the
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simulation extractability property. We must therefore modify our scheme in such a way that we add

extractability without sacri�cing equivocability. Simulation-extractability alone could be achieved

by including a public-key for an encryption scheme secure against adaptive chosen-ciphertext at-

tacks (CCA2) [32] into the common reference string, and having the committer send an encryption

of the decommitment information along with the commitment itself. A simulator knowing the as-

sociated decryption key can decrypt and obtain the decommitment information, thereby extracting

the committed value from any adversarially prepared commitment. (The reason that we use a

CCA2-secure encryption scheme will become evident in the proof. Intuitively, the reason is that in

the simulated interaction extracting the committed value involves ciphertext decryptions. Thus by

interacting with the simulator the adversary essentially has access to a decryption oracle for the

encryption scheme.) However, just encrypting the decommitment information destroys the equiv-

ocability of the overall scheme, since such an encryption is binding even to a simulator. In order

to regain equivocability, we use encryption schemes with pseudorandom ciphertexts. This is used

in the following way. Given any equivocable commitment, there are two possible decommitment

strings (by the binding property, only one can be e�ciently found but they both exist). The com-

mitment is sent along with two ciphertexts: one ciphertext is an encryption of the decommitment

information known to the committer and the other ciphertext is just a uniformly distributed string.

In this way, equivocability is preserved because a simulator knowing both decommitment strings

can encrypt them both and later claim that it only knows the decryption to one and that the

other was uniformly chosen. A problem with this solutions is that there is no known CCA2-secure

scheme with pseudorandom ciphertexts (and assuming only trapdoor permutations). We therefore

use double encryption. That is, �rst the value is encrypted using a CCA2-secure scheme, which

may result in a ciphertext which is not pseudorandom, and then this ciphertext is re-encrypted

using an encryption scheme with pseudorandom ciphertexts. (The second scheme need only be

secure against chosen plaintext attacks.)

For the CCA2-secure scheme, denoted E

cca

, we can use any known scheme based on trapdoor

permutations with the (natural) property that any ciphertext has at most one valid decryption.

This property holds for all known such encryption schemes, and in particular for the scheme of [32].

For the second encryption scheme, denoted E, we use the standard encryption scheme based on

trapdoor-permutations and hard-core predicates [49], where the public key is a trapdoor permuta-

tion f , and the private key is f

�1

. Here encryption of a bit b is f(x) where x is a randomly chosen

element such that the hard-core predicate of x is b. Note that encryptions of both 0 and 1 are

pseudorandom. The commitment scheme, called UC Adaptive Hamiltonicity Commitment UAHC, is

presented in Figure 4.5.

Let F

crs

denote the common reference string functionality (that is, F

crs

provides all parties

with a common, public string drawn from the distribution described in Figure 4.5). Then, we have:

Proposition 4.5.1 Assuming the existence of trapdoor permutations, Protocol UAHC of Figure 4:5

securely realizes F

mcom

in the F

crs

-hybrid model.

Proof: Let A be a malicious, adaptive adversary that interacts with parties running the above

protocol in the F

crs

-hybrid model. We construct an ideal process adversary S with access to

F

mcom

, which simulates a real execution of Protocol UAHC with A such that no environment Z

can distinguish the ideal process with S and F

mcom

from a real execution of UAHC with A.

12

As we have mentioned, the length of the random string r is the same for the case of b = 0 and b = 1. This is

necessary because otherwise it would be possible to distinguish commitments merely by looking at the lengths of C

0

and C

1

.
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Protocol UAHC

� Common Reference String: The string consists of a random image y of a one-way function f

(this y determines the graph G), and public-keys for the encryption schemes E and E

cca

. (The

security parameter k is implicit.)

� Commit Phase:

1. On input (commit; sid; ssid; P

i

; P

j

; b) where b 2 f0; 1g, party P

i

computes z = aHC(b; r)

for a uniformly distributed string of the appropriate length. Next, P

i

computes C

b

=

E(E

cca

(P

i

; P

j

; sid; ssid; r)) using random coins s, and sets C

1�b

to a random string of length

jC

b

j.

12

Finally, P

i

records (sid; ssid; P

j

; r; s; b), and sends c = (sid; ssid; P

i

; z; C

0

; C

1

) to P

j

.

2. P

j

receives and records c, and outputs (receipt; sid; ssid; P

i

; P

j

). P

j

ignores any later commit

messages from P

i

with the same (sid; ssid).

� Reveal Phase:

1. On input (reveal; sid; ssid), party P

i

retrieves (sid; ssid; P

j

; r; s; b) and sends (sid; ssid; r; s; b)

to P

j

.

2. Upon receiving (sid; ssid; r; s; b) from P

i

, P

j

checks that it has a tuple (sid; ssid; P

i

; z; C

0

; C

1

).

If yes, then it checks that z = aHC(b; r) and that C

b

= E(E

cca

(P

i

; P

j

; sid; ssid; r)), where the

ciphertext was obtained using random coins s. If both these checks succeed, then P

j

outputs

(reveal; sid; ssid; P

i

; P

j

; b). Otherwise, it ignores the message.

Figure 4.5: The commitment protocol UAHC

Recall that S interacts with the ideal functionality F

mcom

and with the environment Z. The

ideal adversary S starts by invoking a copy of A and running a simulated interaction of A with

the environment Z and parties running the protocol. (We refer to the interaction of S in the ideal

process as external interaction. The interaction of S with the simulated A is called internal inter-

action.) We �x the following notation. First, the session and sub-session identi�ers are respectively

denoted by sid and ssid. Next, the committing party is denoted P

i

and the receiving party P

j

.

Finally, C denotes a ciphertext generated from E(�), and c denotes a ciphertext generated from

E

cca

(�). Simulator S proceeds as follows:

Initialization step: The common reference string (CRS) is chosen by S in the following way

(recall that S chooses the CRS for the simulated A by itself):

1. S chooses a string x 2

R

f0; 1g

k

and computes y = f(x), where f is the speci�ed one-way

function.

2. S runs the key-generation algorithm for the CCA2-secure encryption scheme, obtaining

a public-key E

cca

and a secret-key D

cca

.

3. S runs the key-generation algorithm for the CPA-secure encryption scheme with pseu-

dorandom ciphertexts, obtaining a public-key E and a secret-key D.

Then, S sets the common reference string to equal (y;E

cca

; E) and locally stores the triple

(x;D

cca

;D). (Recall that y de�nes a Hamiltonian graph G and knowing x is equivalent to

knowing a Hamiltonian cycle in G.)

Simulating the communication with Z: Every input value that S receives from Z is written

on A's input-tape (as if coming from A's environment). Likewise, every output value written



4.5. UNIVERSALLY COMPOSABLE COMMITMENTS 89

by A on its own output tape is copied to S's own output tape (to be read by S's environment

Z).

Simulating \commit" activations where the committer is uncorrupted: Upon receiving a

(receipt; sid; ssid; P

i

; P

j

) message from F

mcom

when P

i

is not corrupted, S simulates a real

commit message from P

i

as follows. S computes z  aHC(0) along with two strings r

0

and

r

1

such that r

b

constitutes a decommitment of z to b. (As we have described, since S knows a

Hamiltonian cycle inG, it is able to do this.) Next, S computesC

0

 E(E

cca

(P

i

; P

j

; sid; ssid; r

0

))

using random coins s

0

, and C

1

 E(E

cca

(P

i

; P

j

; sid; ssid; r

1

)) using random coins s

1

. Then,

in the internal interaction, S simulates P

i

sending c = (sid; ssid; P

i

; z; C

0

; C

1

) to P

j

and stores

(c; r

0

; s

0

; r

1

; s

1

).

Simulating \reveal" activations where the committer is uncorrupted: Upon receiving a

(reveal; sid; ssid; P

i

; P

j

; b) message from F

mcom

when P

i

is not corrupted, S generates a sim-

ulated decommitment message from the real-model P

i

: this message is (sid; ssid; r

b

; s

b

; b),

where r

b

and s

b

are as generated in the previous item. S then simulates for A the event

where P

i

sends this message to P

j

in the internal interaction.

Simulating corruption of parties: When A issues a \corrupt P

i

" command in the internal (sim-

ulated) interaction, S �rst corrupts the ideal model party P

i

and obtains the values of all

its unopened commitments. Then, S prepares the internal state of P

i

to be consistent with

these commitment values in the same way as shown above. That is, in a real execution party

P

i

stores the tuple (sid; ssid; P

j

; r; s; b) for every commitment c. In the simulation, S de�nes

the stored tuple to be (sid; ssid; P

j

; r

b

; s

b

; b) where r

b

and s

b

are as generated above.

Simulating \commit" activations where the committer is corrupted: When A, control-

ling corrupted party P

i

, sends a commitment message (sid; ssid; P

i

; z; C

0

; C

1

) to an uncor-

rupted party P

j

in the internal (simulated) interaction, S works as follows. If a commitment

from P

i

to P

j

using identi�ers (sid; ssid) was sent in the past, then S ignores the message.

Otherwise, informally speaking, S must extract the commitment bit committed to by A.

Simulator S begins by decrypting both C

0

and C

1

obtaining ciphertexts c

0

and c

1

and then

decrypting each of c

0

and c

1

. There are three cases here:

1. Case 1: For some b 2 f0; 1g, c

b

decrypts to (P

i

; P

j

; sid; ssid; r) where r is the correct

decommitment information for z as a commitment to b, and c

1�b

does not decrypt to a

decommitment to 1� b. Then, S sends (commit; sid; ssid; P

i

; P

j

; b) to F

mcom

and stores

the commitment string.

2. Case 2: Neither c

0

or c

1

decrypt to (P

i

; P

j

; sid; ssid; r) where r is the appropriate de-

commitment information for z (and sid and ssid are the correct identi�ers from the

commitment message). In this case, S sends (commit; sid; ssid; P

i

; P

j

; 0) to F

mcom

. (The

commitment string is not stored, since it will never be opened correctly.)

3. Case 3: c

0

decrypts to (P

i

; P

j

; sid; ssid; r

0

) and c

1

decrypts to (P

i

; P

j

; sid; ssid; r

1

), where

r

0

is the correct decommitment information for z as a commitment to 0 and r

1

is the

correct decommitment information for z as a commitment to 1. Furthermore, the iden-

ti�ers in the decryption information are the same as in the commitment message. In

this case, S outputs a special failure symbol and halts.

Simulating \reveal" activations where the committer is corrupted: When A, controlling

corrupted party P

i

, sends a reveal message (sid; ssid; r; s; b) to an uncorrupted party P

j
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in the internal (simulated) interaction, S works as follows. S �rst checks that a tuple

(sid; ssid; P

i

; z; C

0

; C

1

) is stored and that r and s constitute a proper decommitment to b. If

the above holds, then S sends (reveal; sid; ssid; P

i

; P

j

) to F

mcom

. Otherwise, S ignores the

message.

Delivery of messages: S delivers a message from F

mcom

in the external interaction whenA deliv-

ers the corresponding message in the simulated interaction. For example, S delivers a receipt

message in the external interaction when A delivers the appropriate (sid; ssid; P

i

; z; C

0

; C

1

)

message in the simulated internal interaction.

We now prove that Z cannot distinguish an interaction of Protocol UAHC with A from an inter-

action in the ideal process with F

mcom

and S. In order to show this, we examine several hybrid

experiments:

(I) Real interaction: This is the interaction of Z with A and Protocol UAHC.

(II) Real interaction with partially fake commitments: This is the interaction of Z with A and

Protocol UAHC, except that: (i) The Hamiltonian Cycle to G is provided to all honest parties,

but this information is not revealed upon corruption. (ii) In honest party commitments, a

commitment to b is generated by computing z  aHC(0) and strings r

0

; r

1

such that r

0

and r

1

are correct decommitments to 0 and 1, respectively. (This is just like the simulator.) Then, C

b

is computed as an encryption to E(E

cca

(P

i

; P

j

; sid; ssid; r

b

)). However, unlike the simulator,

C

1�b

is still chosen as a uniformly distributed string. Again, this modi�cation is not revealed

upon corruption (i.e., the honest party decommits to b as in a real interaction).

(III) Real interaction with completely fake commitments: This is the same as (II), except that in

commitments generated by honest parties, the ciphertext C

1�b

equalsE(E

cca

(P

i

; P

j

; sid; ssid; r

1�b

))

as generated by S, rather than being chosen uniformly. Commitments are opened in the same

way as the simulator.

(IV) Simulated interaction: This is the interaction of Z with S, as described above.

Our aim is to show that interactions (I) and (IV) are indistinguishable to Z, or in other words

that Z's output at the end of interaction (I) is deviates only negligibly from Z's output at the end

of interaction (IV). We prove this by showing that each consecutive pair of interactions are indis-

tinguishable to Z. (Abusing notation, we use the term \distribution i" to denote both \interaction

i", and \Z's output from interaction i".)

The fact that distributions (I) and (II) are computationally indistinguishable is derived from

the pseudorandomness of the underlying commitment scheme aHC. This can be seen as follows.

The only di�erence between the two distributions is that even commitments to 1 are computed by

z  aHC(0). However, the distribution ensembles faHC(0)g and faHC(1)g are indistinguishable.

Furthermore, these ensembles remain indistinguishable when the decommitment information to 1

is supplied. That is, faHC(0); r

1

g and faHC(1); rg are also indistinguishable, where r

1

is the

(simulator) decommitment of aHC(0) to 1, and r is the (prescribed) decommitment of aHC(1) to 1.

(A standard hybrid argument is employed to take into account the fact that many commitments

and decommitments occur in any given execution.)

Next, distributions (II) and (III) are indistinguishable due to the pseudorandomness of encryp-

tions under E. In particular, the only di�erence between the distributions is that in (II) the cipher-

text C

1�b

is uniformly chosen, whereas in (III) ciphertext C

1�b

equalsE(E

cca

(P

i

; P

j

; sid; ssid; r

1�b

)).
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Intuitively, CPA security su�ces because in order to emulate experiments (II) and (III), no decryp-

tion oracle is needed. In order to formally prove this claim, we use the \left-right" oracle formulation

of security for encryption schemes [7]. In this formulation of security, there is a \left-right" oracle

(LR-oracle) which has a randomly chosen and hidden value b 2 f0; 1g built into it. When queried

with a pair of plaintexts (a

0

; a

1

), the oracle returns E(a

b

). Equivalently, the oracle can be queried

with a single message a such that it returns E(a) if b = 0 and a uniformly distributed string if b = 1.

This reects the fact that here the security lies in the pseudorandomness of the ciphertext, rather

than due to the indistinguishability of encryptions. (We stress that the LR-oracle always uses the

same bit b.) A polynomial-time attacker is successful in this model if it succeeds in guessing the bit

b with a non-negligible advantage. For chosen-plaintext security, this attacker is given access to the

LR-oracle for the encryption scheme E. We now construct an adversary who carries out a chosen-

plaintext attack on E and distinguishes encryptions to strings of the formE

cca

(P

i

; P

j

; sid; ssid; r

1�b

)

from uniformly chosen strings. This adversary emulates experiments (II) and (III) by running Z

and all the parties. However, when an honest party is supposed to generate C

1�b

, the attacker

hands the LR-oracle the query E

cca

(P

i

; P

j

; sid; ssid; r

1�b

) and receives back C

0

which either equals

E(E

cca

(P

i

; P

j

; sid; ssid; r

1�b

)) or is uniformly distributed. The attacker then sets C

1�b

= C

0

. This

emulation can be carried out given the encryption-key E only (i.e., no decryption key is required).

Now, if b = 1 for the LR-oracle, then the attacker perfectly emulates experiment (II). Furthermore,

if b = 0 then the attacker perfectly emulates experiment (III). Finally, as we have mentioned, the

above emulation is carried out using a chosen-plaintext attack on E only. Therefore, if Z can

distinguish experiments (II) and (III), then the attacker can guess the bit b of the LR-oracle with

non-negligible advantage. This is in contradiction to the CPA-security of E.

Finally, we consider the hybrid experiments (III) and (IV). The only di�erence between these

experiments is that in experiment (III) the checks causing S to output failure are not carried out. We

therefore conclude that it su�ces to show that S outputs failure with at most negligible probability.

In order to prove this, we again consider a sequence of hybrid experiments:

(V) Simulation with partially real encryptions: This is the same as (IV), except that S is given (say,

by F) the true values of the inputs for all uncorrupted parties. Then, when generating simu-

lated commitments for uncorrupted parties, S replaces C

1�b

withE(E

cca

(P

i

; P

j

; sid; ssid; 0

jr

1�b

j

)),

where b is the true input value.

(VI) Simulation with nearly real commitments: This is the same as (V), except that in the simulated

commitments generated for uncorrupted parties, S computes z  aHC(b) where b is the true

value of the commitment (instead of always computing z  aHC(0)).

We now claim that the probability that S outputs failure in experiment (IV) is negligibly close to the

probability that it outputs failure in experiment (V). The only di�erence between these experiments

relates to the encryption value of C

1�b

. The proof relies on the chosen-ciphertext security of the

scheme E

cca

. (Chosen ciphertext security is required because the emulation of experiments (IV)

and (V) requires access to a decryption oracle: Recall that S must decrypt ciphertexts in the

simulation of commit-activations where the committer is corrupted.) Formally, we prove this claim

using the \left-right" oracle formulation of security for encryption schemes. Recall that according

to this de�nition, an attacker is given access to an LR-oracle that has a randomly chosen bit b

internally hardwired. The attacker can then query the oracle with pairs (a

0

; a

1

) and receives back

E

cca

(a

b

). When considering CCA2-security, the attacker is given access to the LR-oracle as well as a

decryption oracle for E

cca

which works on all ciphertexts except for those output by the LR-oracle.

We argue that if S outputs failure with probabilities that are non-negligibly far apart in exper-

iments (IV) and (V), then Z together with A can be used to construct a successful CCA2 attacker
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against E

cca

in the LR-model. We now describe the attacker. The attacker receives the public

key for E

cca

. It then simulates experiment (IV) by playing Z, A and S as above, except for the

following di�erences:

1. The public key for E

cca

is given to S externally and S does not have the decryption key.

2. When generating a simulated commitment for an honest party P

i

, the attacker computes

z  aHC(0) and decommitment strings r

0

and r

1

to 0 and 1, respectively. Furthermore,

the attacker computes C

b

 E(E

cca

(P

i

; P

j

; sid; ssid; r

b

)) as S does. However, for C

1�b

, the

attacker queries the LR-oracle with the pair ((P

i

; P

j

; sid; ssid; r

1�b

); (P

i

; P

j

; sid; ssid; 0

jr

1�b

j

)).

When the LR-oracle responds with a ciphertext c

0

, the attacker sets C

1�b

 E(c

0

).

3. When S obtains a commitment (sid; ssid; P

j

; z; C

0

; C

1

) from A controlling a corrupted party

P

i

, then the attacker decrypts C

0

and C

1

using the decryption key for E and obtains c

0

and

c

1

. There are two cases:

� Case 1: A ciphertext c

b

came from a commitment previously generated for an honest

party by S. Now, if this generated commitment was not from P

i

to P

j

, then c

b

can-

not constitute a valid decommitment because the encryption does not contain the pair

(P

i

; P

j

) in this order. On the other hand, if the previous commitment was from P

i

to P

j

,

then the sub-session identi�ers must be di�erent and therefore it still cannot be a valid

decommitment. (Recall that P

j

will ignore a second commitment from P

i

with the same

identi�ers.) In this case, the attacker acts just as S would for ciphertexts that do not

decrypt to valid decommitment information. (Notice that the attacker does not need to

use the decryption oracle in this case.)

� Case 2: A ciphertext c

b

was not previously generated by S. Then, except with negligible

probability, this ciphertext could not have been output by the LR-oracle. Therefore, the

attacker can query its decryption oracle and obtain the corresponding plaintext. Given

this plaintext, the attacker proceeds as S does.

Analyzing the success probability of the attacker, we make the following observations. If the

LR-oracle uses Left encryptions (i.e., it always outputs a ciphertext c

0

that is an encryption of

(P

i

; P

j

; sid; ssid; r

1�b

)), then the resulting simulation is negligibly close to experiment (IV). (The

only di�erence is in the case that a ciphertext c

b

generated by A coincides with a ciphertext

output by the LR-oracle. However, this occurs with only negligible probability, otherwise E

cca

does not provide correctness.) On the other hand, if the LR-oracle uses Right encryptions (i.e, it

always outputs a ciphertext c

0

that is an encryption of (P

i

; P

j

; sid; ssid; 0

jr

1�b

j

)), then the resulting

simulation is negligibly close to experiment (V). Therefore, by the CCA2-security of E

cca

, the

probability that Z outputs 1 from experiment (IV) must be negligibly close to the probability that

it outputs 1 in experiment (V). By having Z output 1 if and only if S outputs a failure symbol, we

have that the probability that S outputs failure in the two experiments is negligibly close.

We now proceed to show that the probability that S outputs failure in experiments (V) and

(VI) is negligibly close. This follows from the indistinguishability of commitments faHC(0)g and

faHC(1)g. (A standard hybrid argument is used to take into account the fact that many commit-

ments are generated by S during the simulation.) Here we use the fact that in both experiments

(V) and (VI) the ciphertext C

1�b

is independent from the rest of the commitment.

Finally, to complete the proof, we show that in experiment (VI) the probability that S outputs

failure is negligible. The main observation here is that in experiment (VI), S does not use knowledge

of a Hamiltonian cycle in G. Now, if S outputs failure when simulating commit activations for a
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corrupted party, then this means that it obtains a decommitment to 0 and to 1 for some commitment

string z. However, by the construction of the commitment scheme, this means that S obtains a

Hamiltonian cycle (and equivalently a pre-image of y = f(x)). Since S can do this with only

negligible probability we have that this event can also only occur with negligible probability. We

conclude that S outputs failure in experiment (VI), and therefore in experiment (IV), with only

negligible probability. (Formally speaking, given S we construct an inverter for f that proceeds

as described above.) This completes the hybrid argument, demonstrating that Z can distinguish

experiments (I) and (IV) with only negligible probability.

4.6 Universally Composable Zero-Knowledge

We present and discuss the ideal zero-knowledge functionality F

zk

. This functionality plays a central

role in our general construction of protocols for realizing any two-party functionality. Speci�cally,

our protocol for realizing the commit-and-prove functionality is constructed and analyzed in a

hybrid model with access to F

zk

(i.e., in the F

zk

-hybrid model). Using the universal composition

theorem, the construction can be composed with known protocols that securely realize F

zk

, either

in the F

mcom

-hybrid model or directly in the common reference string (CRS) model, to obtain

protocols for realizing any two-party functionality in the CRS model. (Actually, here we use

universal composition with joint state. See more details below.)

In the zero-knowledge functionality, parameterized by a relation R, the prover sends the func-

tionality a statement x to be proven along with a witness w. In response, the functionality forwards

the statement x to the veri�er if and only if R(x;w) = 1 (i.e., if and only if it is a correct statement).

Thus, in actuality, this is a proof of knowledge in that the veri�er is assured that the prover actually

knows w (and has explicitly sent w to the functionality), rather than just being assured that such

a w exists. The zero-knowledge functionality, F

zk

, is presented in Figure 4.6.

Functionality F

zk

F

zk

proceeds as follows, running with a prover P , a veri�er V and an adversary S, and parameterized

with a relation R:

� Upon receiving (ZK-prover; sid; x; w) from P , do: if R(x;w) = 1, then send (ZK-proof; sid; x) to V

and S and halt. Otherwise, halt.

Figure 4.6: The single-session F

zk

functionality

Let us highlight several technical issues that motivate the present formalization. First, notice

that the functionality is parameterized by a single relation (and thus a di�erent copy of F

zk

is

used for every di�erent relation required). Nonetheless, the relation R may actually index any

polynomial number of predetermined relations for which the prover may wish to prove statements.

This can be implemented by separating the statement x into two parts: x

1

that indexes the relation

to be used and x

2

that is the actual statement. Then, de�ne R((x

1

; x

2

); w)

def

= R

x

1

(x

2

; w). (Note

that in this case the set of relations to be indexed is �xed and publicly known.)

13

13

Another possibility is to parameterize F

zk

by a polynomial q(�). Then, P

i

sends the functionality a triple

(x;w;C

R

), where C

R

is a two-input binary circuit of size at most q(jxj). (This circuit de�nes the relation being used.)

The ideal functionality then sends P

j

the circuit C

R

and the bit C

R

(x;w). This approach has the advantage that the

relations to be used need not be predetermined and �xed.
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Second, the functionality is de�ned so that only correct statements (i.e., values x such that

R(x;w) = 1) are received by P

2

in the prove phase. Incorrect statements are ignored by the

functionality, and the receiver P

2

receives no noti�cation that an attempt at cheating in a proof

took place. This convention simpli�es the description and analysis of our protocols. We note,

however, that this is not essential. Error messages can be added to the functionality (and realized)

in a straightforward way. Third, we would like to maintain the (intuitively natural) property that

a prover can always cause the veri�er to reject, even if for every w it holds that R(x;w) = 1 (e.g.,

take R = f0; 1g

�

� f0; 1g

�

). This technicality is solved by de�ning a special witness input symbol

\?" such that for every relation R and every x, R(x;?) = 0.

Note that each copy of the functionality handles only a single proof (with a given prover and a

given veri�er). This is indeed convenient for protocols in the F

zk

-hybrid model, since a new copy

of F

zk

can be invoked for each new proof (or, each \session"). However, directly realizing F

zk

in

the F

crs

-hybrid model and using the universal composition theorem would result in an extremely

ine�cient composed protocol, where a new instance of the reference string is needed for each proof.

Instead, we make use of universal composition with joint state, as follows. We start by de�ning

functionality

^

F

zk

, the multi-session extension of F

zk

, and recall known protocols that securely

realize

^

F

zk

using a single short instance of the common string. We then use the JUC theorem to

compose protocols in the F

zk

-hybrid model with protocols that securely realize

^

F

zk

.

The de�nition of

^

F

zk

, the multi-session extension of F

zk

, follows from the de�nition of F

zk

and the general de�nition of multi-session extensions (see Section 4.3.2). Nonetheless, for sake

of clarity we explicitly present functionality

^

F

zk

in Figure 4.7. An input to

^

F

zk

is expected to

contain two types of indices: the �rst one, sid, is the SID that di�erentiates messages to

^

F

zk

from

messages sent to other functionalities. The second index, ssid, is the sub-session ID and is unique

per \sub-session" (i.e., per input message).

Functionality

^

F

zk

^

F

zk

proceeds as follows, running with parties P

1

; : : : ; P

n

and an adversary S, and parameterized with

a relation R:

� Upon receiving (ZK-prover; sid; ssid; P

i

; P

j

; x; w) from P

i

: If R(x;w) = 1, then send the message

(ZK-proof; sid; ssid; P

i

; P

j

; x) to P

j

and S. Otherwise, ignore.

Figure 4.7: The multi-session zero-knowledge functionality

In the case of static adversaries, De Santis et al. present a protocol that securely realizes

^

F

zk

, for

any NP relation, in the common reference string (CRS) model [26]. This is done assuming existence

of trapdoor one-way permutations. Furthermore, the protocol is \non-interactive", in the sense that

it consists of a single message from the prover to the veri�er. In the case of adaptive adversaries,

Canetti and Fischlin show a three-round protocol that securely realizes

^

F

zk

in the F

mcom

-hybrid

model, where F

mcom

is the multi-session universally composable commitment functionality (see

Section 4.5 below). The protocol uses a single copy of F

mcom

.

14

14

Actually, the zero-knowledge functionality in [16] is only \single session" (and has some other technical di�erences

from

^

F

zk

). Nonetheless, it is easy to see that by using F

mcom

and having the prover �rst check that it's input x and

w is such that (x;w) 2 R, their protocol securely realizes

^

F

zk

.
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4.7 The Commit-and-Prove Functionality F

cp

In this section we de�ne the \commit-and-prove" functionality, F

cp

, and present protocols for

securely realizing it. As discussed in Section 4.2, this functionality, which is a generalization of the

commitment functionality, is central for constructing the protocol compiler. As in the case of F

zk

,

the F

cp

functionality is parameterized by a relation R. The �rst stage is a commit phase in which

the receiver obtains a commitment to some value w. The second phase is more general than plain

decommitment. Rather than revealing the committed value, the functionality receives some value

x from the committer, sends x to the receiver, and asserts whether R(x;w) = 1. To see that this

is indeed a generalization of a commitment scheme, take R to be the identity relation and x = w.

Then, following the prove phase, the receiver obtains w and is assured that this is the value that

was indeed committed to in the commit phase.

In fact, F

cp

is even more general, in the following ways. First it allows the committer to commit

to multiple secret values w

i

, and then have the relation R depend on all these values in a single

proof. (This extension is later needed for dealing with reactive protocols, where inputs may be

received over time.) Second, the committer may ask to prove multiple statements with respect to

the same set of secret values. These generalizations are dealt with as follows. When receiving a

new (commit; sid; w) request from the committer, F

cp

adds the current w to the already existing

list w of committed values. When receiving a (CP-prover; sid; x) request, F

cp

evaluates R on x and

the current list w. Functionality F

cp

is presented in Figure 4.8.

Functionality F

cp

F

cp

proceeds as follows, running with a committer C, a receiver V and an adversary S, and is param-

eterized by a value k and a relation R:

Commit Phase: Upon receiving a message (commit; sid; w) from C where w 2 f0; 1g

k

, append the

value w to the list w, and send the message (receipt; sid) to V and S. (Initially, the list w is

empty.)

Prove Phase: Upon receiving a message (CP-prover; sid; x) from C, where x 2 f0; 1g

poly(k)

, compute

R(x;w): If R(x;w) = 1, then send V and S the message (CP-proof; sid; x). Otherwise, ignore

the message.

Figure 4.8: The commit-and-prove functionality

As in the case of F

zk

, the F

cp

functionality is de�ned so that only correct statements (i.e.,

values x such that R(x;w) = 1) are received by V in the prove phase. Incorrect statements are

ignored by the functionality, and the receiver V receives no noti�cation that an attempt at cheating

in a proof took place.

4.7.1 Securely Realizing F

cp

for static adversaries

We present protocols for securely realizing the F

cp

functionality in the F

zk

-hybrid model, for both

static and adaptive adversaries. We �rst concentrate on the case of static adversaries, since it is

signi�cantly simpler than the adaptive case, and therefore serves as a good warm-up.

The commit phase and the prove phase of the protocol each involve a single invocation of F

zk

.

(The relation used in each phase is di�erent.) In the commit phase the committer commits to

a value using a standard commitment scheme, and proves knowledge of the decommitment value
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through F

zk

. Thus we obtain a \commit-with-knowledge" protocol, in which the simulator can

extract the committed value.

Speci�cally, let C be a perfectly binding commitment scheme, and denote by C(w; r) a commit-

ment to a string w using a random string r. For simplicity, we use a non-interactive commitment

scheme. Such schemes exist assuming the existence of 1{1 one-way functions, see [45]. (Alterna-

tively, we could use the Naor scheme [70] that can be based on any one-way function, rather than

requiring 1{1 one-way functions. In this scheme, the receiver sends an initial message and then the

committer commits. This changes the protocol and analysis only slightly. We note that in fact,

the use of perfect binding is not essential and computational binding actually su�ces, as will be

the case in Section 4.7.2.) Loosely speaking, the protocol begins by C sending c = C(w; r) to V ,

and then proving knowledge of the pair (w; r). In our terminology, this consists of the committer

C sending (ZK-prover; sid

C

; c = C(w; r); (w; r)) to F

zk

, which is parameterized by the following

relation R

C

:

R

C

= f(c; (w; r)) j c = C(w; r)g (4.4)

That is, R

C

is the relation of pairs of commitments with their decommitment information. In

addition, the committer C keeps the list w of all the values w committed to. It also keeps the lists

r and c of the corresponding random values and commitment values.

When the receiver V receives (ZK-proof; sid

C

; c) from F

zk

, it accepts c as the commitment string

and adds c to its list c of accepted commitments. (Note that in the F

zk

-hybrid model, V is guar-

anteed that C \knows" the decommitment, in the sense that C explicitly sent the decommitment

value to F

zk

.)

The prove phase of the protocol also involves invoking F

zk

where the relation R

P

parameterizing

the F

zk

functionality is de�ned as follows. Let R be the relation parameterizing F

cp

. Then, R

P

is

de�ned by:

R

P

def

= f((x; c); (w; r)) j 8i; c

i

= C(w

i

; r

i

) & R(x;w) = 1g (4.5)

That is, R

P

con�rms that c is the vector of commitments to w, and that R(x;w) = 1. Thus, the

prove phase consists of the committer proving some NP-statement regarding the values committed

to previously. (The value x is the NP-statement and the values committed to, plus the randomness

used, comprise the \witness" for x). Upon receiving the message (ZK-proof; sid

P

; (x; c)) from F

zk

,

the receiver accepts if c equals the list of commitments that it had previously received. (The receiver

must check c because this is what ensures that the witness being used is indeed the list of values

previously committed to, and nothing else.) Finally, note that if R 2 NP , then so too is R

P

.

We denote by F

c

zk

and F

p

zk

the copies of F

zk

from the commit phase and prove phase respectively

(i.e., F

c

zk

is parameterized by R

C

and F

p

zk

is parameterized by R

P

). Formally, the two copies

of F

zk

are di�erentiated by using session identi�ers sid

C

and sid

P

, respectively. (E.g., one can

de�ne sid

C

= sid�`C' and sid

P

= sid�`P', where sid is the session identi�er of the protocol

for realizing F

cp

and \�" denotes concatenation.) The protocol, using a perfectly binding non-

interactive commitment scheme C, is presented in Figure 4.9.

Proposition 4.7.1 Assuming that C is a secure (perfectly binding) commitment scheme, Protocol

SCP of Figure 4:9 securely realizes F

cp

in the F

zk

-hybrid model, for static adversaries.

Proof: Let A be a static adversary who operates against Protocol SCP in the F

zk

-hybrid model.

We construct an ideal-process adversary (or simulator) S such that no environment Z can tell with

non-negligible probability whether it is interacting with A and parties running Protocol SCP in

the F

zk

-hybrid model or with S in the ideal process for F

cp

. As usual, S will run a simulated copy

of A and will use A in order to interact with Z and F

cp

. For this purpose, S will \simulate for
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Protocol SCP

� Auxiliary Input: A security parameter k.

� Commit phase:

1. On input (commit; sid; w), where w 2 f0; 1g

k

, C chooses a random string r of length

su�cient for committing to w in scheme C, and sends (ZK-prover; sid

C

; C(w; r); (w; r)) to

F

c

zk

, where F

c

zk

is parameterized by the relation R

C

de�ned in Eq. (4.4). In addition, C

stores in a vector w the list of all the values w that it has sent to F

zk

, and in vectors r and

c the corresponding lists of random strings and commitment values.

2. When receiving (ZK-proof; sid

C

; c) from F

c

zk

, V outputs (receipt; sid), and adds c to its list

of commitments c. (Initially, c is empty.)

� Prove phase:

1. On input (CP-prover; sid; x), C sends (ZK-prover; sid

P

; (x; c); (w; r)) to F

p

zk

, where w; r; c are

the above-de�ne vectors and F

p

zk

is parameterized by the relation R

P

de�ned in Eq. (4.5).

2. When receiving (ZK-proof; sid

P

; (x; c)) from F

p

zk

, V proceeds as follows. If its list of com-

mitments equals c, then it outputs (CP-proof; sid; x). Otherwise, it ignores the message.

Figure 4.9: A protocol for realizing F

cp

for static adversaries

A" an interaction with parties running Protocol SCP, where the interaction will match the inputs

and outputs seen by Z in its interaction with S in the ideal process for F

cp

. We use the term

external communication to refer to S's communication with Z and F

cp

. We use the term internal

communication to refer to S's communication with the simulated A.

Recall that A is a static adversary and therefore the choice of which parties are under its control

(i.e., corrupted) is predetermined. When describing S, it su�ces to describe its reaction to any

one of the possible external activations (inputs from Z and messages from F

cp

) and any one of

the possible outputs or outgoing messages generated internally by A. This is done below. For

clarity, we group these activities according to whether or not the committing party C is corrupted.

Simulator S proceeds as follows:

Simulating the communication with the environment: Every input value coming from Z

(in the external communication) is forwarded to the simulated A (in the internal communi-

cation) as if coming from A's environment. Similarly, every output value written by A on its

output tape is copied to S's own output tape (to be read by the external Z).

Simulating the case where the committer is uncorrupted: In this case, A expects to see

the messages sent by F

c

zk

and F

p

zk

to V . (Notice that the only messages sent in the protocol

are to and from F

c

zk

and F

p

zk

; therefore, the only messages seen by A are those sent by these

functionalities. This holds regardless of whether the receiver V is corrupted or not.) In the

ideal process, S receives the (receipt; : : :) and (CP-proof; : : :) messages that V receives from

F

cp

. It constructs the appropriate F

c

zk

messages given the receipt messages from F

cp

, and

the appropriate F

p

zk

messages given the CP-proof messages from F

cp

. This is done as follows:

� Whenever S receives a message (receipt; sid) from F

cp

where C is uncorrupted, S computes

c = C(0

k

; r) for a random r and (internally) passes A the message (ZK-proof; sid

C

; c), as

A would receive from F

c

zk

in a real protocol execution. Furthermore, S adds the value c
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to its list of simulated-commitment values c. (It is stressed that the commitment here is

to an unrelated value, however by the hiding property of commitments and the fact that

all commitments are of length k, this is indistinguishable from a real execution.)

� Whenever S receives a message (CP-proof; sid; x) from F

cp

where C is uncorrupted, S

internally passes A the message (ZK-proof; sid

P

; (x; c)), as A would receive from F

p

zk

in

a protocol execution, where c is the current list of commitment values generated in the

simulation of the commit phase.

Simulating the case where the committer is corrupted: Here, A controls C and generates

the messages that C sends during an execution of Protocol SCP.

15

Intuitively, in this case S

must be able to extract the decommitment value w from A during the commit phase of the

protocol simulation. This is because, in the ideal process, S must explicitly send the value w

to F

cp

(and must therefore know the value being committed to). Fortunately, this extraction

is easy for S to do because A works in the F

zk

-hybrid model, and any message sent by A to

F

zk

is seen by S during the simulation. In particular, S obtains the ZK-proof message sent

by A to F

c

zk

, and this message is valid only if it explicitly contains the decommitment. The

simulation is carried out as follows:

� Whenever the simulatedA internally delivers a message of the form (ZK-prover; sid

C

; c; (w; r))

from a corrupted C to F

c

zk

, simulator S checks that c = C(w; r). If yes, then S externally

sends (commit; sid; w) to F

cp

and internally passes (ZK-proof; sid

C

; c) to A (as if coming

from F

c

zk

). Furthermore, S adds c to its list of received commitments c. Otherwise, S

ignores the message.

� Whenever A internally generates a message of the form (ZK-prover; sid

P

; (x; c); (w; r))

going from C to F

p

zk

, simulator S acts as follows. First, S checks that c equals its

list of commitments and that ((x; c); (w; r)) 2 R

P

. If yes, then S internally passes

(ZK-proof; sid

P

; (x; c)) to A (as if received from F

p

zk

) and externally sends the prover

message (CP-prover; sid; x) to F

cp

. If no, then S does nothing.

Output delivery: It remains to describe when (if at all) S delivers the receipt and CP-proof

messages sent to V from F

cp

in the ideal process. This is decided by simply having S deliver

a receipt message to V when A delivers the corresponding ZK-proof message of the commit

phase in the simulation. Likewise, S delivers a CP-proof message to V when A delivers the

corresponding ZK-proof message of the prove phase in the simulation.

We show that for every environment Z it holds that:

ideal

F

cp

;S;Z

c

� hybrid

F

zk

scp;A;Z

(4.6)

We �rst assert the following claim regarding the case where the committer is corrupted: the

receiver V accepts a proof in the protocol execution if and only if in the ideal model simulation, V

receives (CP-proof; sid; x) from F

cp

. This can be seen as follows. First, note that if A (controlling

C) sends a ZK-prover message containing a di�erent vector of commitments to that sent in previous

commit activations, then S does not send any CP-prover message to F

cp

. Likewise, in such a case,

V ignores the ZK-proof message. Simulator S also checks that ((x; c); (w; r)) 2 R

P

before sending

any CP-prover message to F

cp

. Thus, if this does not hold, no CP-proof message is received by

15

We assume without loss of generality that the receiver V is uncorrupted, since carrying out an interaction where

both participants are corrupted bears no e�ect on the view of Z.
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V . Likewise, in a protocol execution, if ((x; c); (w; r)) 62 R

P

, then V receives no CP-proof message.

Finally, we note that by the (perfect) binding property of the commitment scheme, if A tries to use

a di�erent vector of witnesses than that committed to in the commit phase, then this is detected by

V and S, and the message is ignored. (By the perfect binding of the commitment scheme, the vector

c de�nes a unique witness vector w that can be used.) We conclude that when S sends a CP-prover

message to F

cp

the following holds: R(x;w) = 1 if and only if R

P

((x; c); (w; r)) = 1, where c is the

vector of commitments sent by the corrupted committer. Thus, V outputs (CP-proof; sid; x) in a

protocol execution if and only if F

cp

sends (CP-proof; sid; x) to V in the ideal model simulation.

We proceed to demonstrate Eq. (4.6). Since S obtains the messages sent by A to both the F

c

zk

and F

p

zk

functionalities, most of the simulation is perfect and the messages seen by A are exactly

the same as it would see in a hybrid execution of Protocol SCP. There is, however, one case where

the simulation is di�erent from a real execution. When the committer is uncorrupted, S receives

a (receipt; sid) message from F

cp

and must generate the message that A would see from F

c

zk

in

the protocol. Speci�cally, S sends (ZK-proof; sid; c) to A, where c = C(0

k

; r). That is, S passes

A a commitment to a value that is unrelated to C's input. In contrast, in a real execution of

Protocol SCP, the value c seen by A is c = C(w; r), where w is C's actual input. Intuitively, by

the hiding property of the commitment scheme C, these two cases are indistinguishable. Formally,

assume that there exists an adversary A, an environment Z and an input z to Z, such that the

ideal and hybrid distributions can be distinguished. Then, we construct a distinguisher D for

the commitment scheme C. That is, the distinguisher D chooses some challenge w, receives a

commitment c that is either to 0

k

or to w, and can tell with non-negligible probability which is the

case.

Distinguisher D invokes the environment Z, the party C and the simulator S (which runs A

internally) on the following simulated interaction. First, a number i is chosen at random in [t],

where t is a bound on the running time of Z. Then, for the �rst i � 1 commitments c generated

by S, distinguisher D sets c = C(0

k

; r). When S is about to generate the i

th

commitment, D

declares the corresponding value w to be the challenge value, and obtains a test value c

�

. (This w

is the value that the simulated Z hands the uncorrupted committer C.) Then, S uses c

�

as the

commitment value for the i

th

commitment. The rest of the commitments in the simulation are

generated as normal commitments to the corresponding input values provided by Z. When Z halts

with an output value, D outputs whatever Z outputs and halts.

Analysis of the success probability of D is done via a standard hybrid argument and is omit-

ted. We obtain that D succeeds in breaking the commitment with advantage p=t, where p is the

advantage in which Z distinguishes between an interaction in the hybrid model and an interaction

in the ideal process (and t is the bound on Z's running time).

On su�cient assumptions for realizing F

cp

: For simplicity, Protocol SCP uses a non-interactive

commitment scheme, which can be based on 1{1 one-way functions. However, as we have men-

tioned, the commit-phase of Protocol SCP can be modi�ed to use Naor's commitment scheme [70]

(which in turn can use any one-way function). In this case, V begins by sending the receiver

message of the [70] scheme, and then C sends the commit message, using F

c

zk

as in Protocol SCP.

Thus, we have that F

cp

can be securely realized in the F

zk

-hybrid model, assuming the existence

of any one-way function.
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4.7.2 Securely Realizing F

cp

for adaptive adversaries

We now present a protocol for securely realizing functionality F

cp

in the F

zk

-hybrid model, in the

presence of adaptive adversaries. The di�erence between this protocol and Protocol SCP for static

adversaries is in the properties of the underlying commitment scheme C in use. Essentially, here we

use a commitment scheme that is \adaptively secure". That is, a simulator (having access to some

trapdoor information) can generate \dummy commitments" that can later be opened in several

ways.

16

In order to achieve this, the commit phase of the protocol will now involve two invocations

of F

zk

. As in the case of Protocol SCP, the relations used by the invocations of F

zk

in the commit

phase are di�erent from the relation used in the prove phase. Thus, for sake of clarity we use three

di�erent copies of F

zk

, two for the commit messages and one for the prove messages.

The speci�c commitment scheme C used in the commit phase here is the aHC commitment

that lies at the core of the universally composable commitment scheme of Section 4.5. Recall

that this scheme uses a common reference string containing an image y of a one-way function f .

However, here we work in the F

zk

-hybrid model and do not have access to a common reference

string. Thus, the common reference string is \replaced" by interaction via the F

zk

functionality.

That is, the basic commitment scheme is as follows. The receiver V chooses a random value t

and sends the committer C the value s = f(t). Next, C uses s to commit to its input value, as

de�ned in the aHC commitment scheme. That is, C �rst obtains a Hamiltonian graph G such

that �nding a Hamiltonian cycle in G is equivalent to computing the preimage t of s. (This is

obtained by reducing the NP-language fs j 9t s.t. s = f(t)g to Hamiltonicity.) Then, in order to

commit to 0, C chooses a random permutation � of the nodes of G and commits to the edges of the

permuted graph one-by-one, using a non-interactive commitment scheme Com with pseudorandom

commitments. (Such a scheme can be obtained using one-way permutations, see Section 4.5.) On

the other hand, in order to commit to 1, C chooses a randomly labeled cycle over the same number

of nodes as in G. Then, C uses Com to commit to these entries and produces random values for

the rest of the adjacency matrix. As was shown in Section 4.5, this commitment scheme is both

hiding and binding, and also has the property that given a preimage t of s, it is possible to generate

a \dummy commitment" that can be later explained as a commitment to both 0 and 1. (Thus, t is

essentially a trapdoor.) We denote a commitment of this type by aHC

s

(w; r), where s is the image

of the one-way function being used, w is the value being committed to, and r is the randomness

used in generating the commitment.

The commitment scheme aHC as described above requires that the underlying one-way function

be a permutation. However, by using interaction, we can implement Com using the commitment

scheme of Naor [70] (this scheme also has pseudorandom commitments). We thus obtain that aHC

can be implemented using any one-way function. For simplicity, the protocol is written for Com

that is non-interactive (and therefore assumes one-way permutations). However, it is not di�cult

to modify it so that the [70] scheme can be used instead.

As in the case of Protocol SCP, the �rst stage of the adaptive protocol (denoted ACP for adap-

tive commit-and-prove) involves carrying out the commit phase of the above-described commitment

scheme via invocations of F

zk

. This use of F

zk

enables the simulator to extract the committed

value from the committing party. In addition, here F

zk

is also used to enable the simulator to ob-

tain the trapdoor information needed for carrying out the adaptive simulation. Thus the protocol

begins by the receiver �rst choosing a random string t and computing s = f(t). Next, it sends

16

The property actually required is that the simulator can generate a \commitment" c such that given any w at

a later stage, it can �nd randomness r such that c = C(w; r). This is needed for the adaptive corruption of the

committing party. See Section 4.5 for more discussion.
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s to the committer and, in addition, proves that it knows the preimage t. Loosely speaking, in

the F

zk

-hybrid model, this involves sending a (ZK-prover; sid; s; t) message to F

zk

and having the

functionality send C the message (ZK-proof; sid; s) if s = f(t). We note that this step is carried

out only once, even if many values are later committed to. Thus, the same s is used for many

commitments.

Let F

t

zk

denote the copy of F

zk

used for proving knowledge of the trapdoor/preimage. Then,

F

t

zk

is parameterized by the relation R

T

de�ned as follows:

R

T

def

= f(s; t) j s = f(t)g (4.7)

F

zk

is used twice more; once more in the commit phase and once in the prove phase. These copies

of F

zk

are denoted F

c

zk

and F

p

zk

, respectively. The uses of F

zk

here are very similar to the static

case (Protocol SCP). We therefore proceed directly to de�ning the relations R

C

and R

P

that

parameterize F

c

zk

and F

p

zk

, respectively:

R

C

def

= f((s; c); (w; r)) j c = aHC

s

(w; r)g (4.8)

R

P

def

= f((x; s; c); (w; r)) j 8i; c

i

= aHC

s

(w

i

; r

i

) & R(x;w) = 1g (4.9)

The only di�erence between the de�nition of R

C

and R

P

here and in the static case is that here

the value s is included as well. This is because a pair (s; c) binds the sender to a single value w,

whereas c by itself does not. The protocol for the adaptive case is presented in Figure 4.10. (As

in the static case, we formally di�erentiate the copies of F

zk

by session identi�ers sid

T

, sid

C

and

sid

P

.)

Proposition 4.7.2 Assuming the existence of one-way functions, Protocol ACP of Figure 4:10

securely realizes F

cp

in the F

zk

-hybrid model, in the presence of adaptive adversaries.

Proof (sketch): The proof of the above proposition follows similar lines to the proof of Proposi-

tion 4.7.1. However, here the adversary A can adaptively corrupt parties. Therefore, the simulator

S must deal with instructions from A to corrupt parties during the simulation. When given such

a \corrupt" command, S corrupts the ideal model party and receives its input (and possibly its

output). Then, given these values, S must provide A with random coins such that the simulated

transcript generated so far is consistent with this revealed input and output. (An additional \com-

plication" here is that the binding property of C is only computational. Thus, the validity of the

simulation will be demonstrated by a reduction to the binding property of C.)

More precisely, Let A be an adaptive adversary who operates against Protocol ACP in the F

zk

-

hybrid model. We construct a simulator S such that no environment Z can tell with non-negligible

probability whether it is interacting with A and parties running Protocol ACP in the F

zk

-hybrid

model or with S in the ideal process for F

cp

. Simulator S will operate by running a simulated copy

of A and will use A in order to interact with Z and F

cp

. S works in a similar way to the simulator

in the static case (see the proof of Proposition 4.7.1), with the following changes:

1. S records the pair (s; t) from the initialization phase of an execution. In the case where

the receiver is uncorrupted, this pair is chosen by S itself. In the case where the receiver

is corrupted this pair is chosen by the simulated A, and S obtains both s and t from the

message that the corrupted receiver sends to F

t

zk

.

2. Whenever an uncorrupted party C commits to an unknown value w, simulator S hands A a

commitment to 0

k

as the commitment value. More precisely, whenever S receives from F

cp
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Protocol ACP

� Auxiliary Input: A security parameter k, and a session identi�er sid.

� Initialization phase:

The �rst time that the committer C wishes to commit to a value using the identi�er sid, parties

C and V execute the following before proceeding to the commit phase:

1. C sends sid to V to indicate that it wishes to initiate a commit activation.

2. Upon receiving sid from C, the receiver V chooses t 2

R

f0; 1g

k

, computes s = f(t) (where f

is a one-way function), and sends (ZK-prover; sid

T

; s; t) to F

t

zk

, where F

t

zk

is parameterized by

the relation R

T

de�ned in Eq. (4.7). V records the value s.

3. Upon receiving (ZK-proof; sid

T

; s) from F

t

zk

, C records the value s.

� Commit phase:

1. On input (commit; sid; w) (where w 2 f0; 1g

k

), C computes c = aHC

s

(w; r) for a random r and

using the s it received in the initialization phase. C then sends (ZK-prover; sid

C

; (s; c); (w; r))

to F

c

zk

, where F

c

zk

is parameterized by the relation R

C

de�ned in Eq. (4.8). In addition, C

stores in a vector w the list of all the values w that were sent, and in vectors r and c the

corresponding lists of random strings and commitment values.

2. Upon receiving (ZK-proof; sid

C

; (s

0

; c)) from F

c

zk

, V veri�es that s

0

equals the string s that it

sent in the initialization phase, outputs (receipt; sid) and adds the value c to its list c. (Initially,

c is empty.) If s

0

6= s, then V ignores the message.

� Prove phase:

1. On input (CP-prover; sid; x), C sends (ZK-prover; sid

P

; (x; s; c); (w; r)) to F

p

zk

, where c, w and

r are the vectors described above, and F

p

zk

is parameterized by the relation R

P

de�ned in

Eq. (4.9).

2. Upon receiving (ZK-proof; sid; (x; s

0

; c)) from F

p

zk

, V veri�es that s

0

is the string that it sent

in the initialization phase, and that its list of commitments equals c. If so, then it outputs

(CP-proof; sid; x). Otherwise, it ignores the message.

Figure 4.10: A protocol for realizing F

cp

for adaptive adversaries

a message (receipt; sid) where C is uncorrupted, S computes c = aHC

s

(0

k

; r) for a random

r, and hands A the message (ZK-proof; sid

C

; (s; c)), as if coming from F

c

zk

. (Recall that by

the aHC scheme, a commitment to 0 can be opened as either 0 or 1, given the trapdoor

information t; see Section 4.5.)

3. When the simulated A internally corrupts C, simulator S �rst externally corrupts C in the

ideal process for F

cp

and obtains the vector of values w that C committed to so far. Next,

S prepares for A a simulated internal state of C in Protocol ACP as follows. Apart from

the vector of committed values w, the only hidden internal state that C keeps in Protocol

ACP is a vector of random strings r that were used to commit to each w

i

in w. That is, for

each input value w

i

in w, adversary A expects to see a value r

i

such that c

i

= aHC

s

(w

i

; r

i

),

where c

i

is the corresponding commitment value that S generated and handed to A in the

simulation of commitments by an uncorrupted C (see step 2 above). Thus, for every i, S

generates the appropriate value r

i

using the trapdoor t, and then hands the list r to A. (See

Section 4.5 for a description of exactly how this randomness is generated.)
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4. When the simulated A internally corrupts V , S provides A with a simulated internal state

of V . This state consists of the preimage t, plus the messages that V receives from F

zk

. All

this information is available to S.

The analysis of the above simulator is very similar to the static case (Proposition 4.7.1). The main

di�erence is that here the commitment is only computationally binding. Thus the following bad

event is potentially possible: When the committer C is corrupted, the simulated A commits to

a series of values w with corresponding commitment values c. Later, in the prove phase, A then

generates a message (ZK-prover; sid

P

; (x; c); (w

0

; r

0

)) to send to F

p

zk

, where w

0

6= w and yet for every

i, it holds that c

i

= aHC

s

(w

0

i

; r

0

i

). Furthermore, R(x;w

0

) = 1 and R(x;w) = 0. In other words, the

bad event corresponds to a case where in the ideal process F

cp

does not send a (CP-proof; sid; x)

message (because R(x;w) = 0), whereas V does output such a message in a real execution of

Protocol ACP (because R

P

((x; s; c)(w

0

; r

0

)) = 1 and the vector of commitments c is as observed by

V ). (We note that given that this event does not occur, the correctness of the simulation carried

out by S follows the same argument as in the proof of Proposition 4.7.1.)

We conclude the proof by showing that this bad event occurs with negligible probability, or else

Z andA can be used to construct an algorithm that breaks the binding property of the aHC commit-

ment scheme. It su�ces to show that A cannot generate a message (ZK-prover; sid

P

; (x; c); (w

0

; r

0

))

where w

0

6= w and yet for every i, it holds that c

i

= aHC

s

(w

0

i

; r

0

i

). Intuitively, this follows from the

binding property of aHC (see Section 4.5). In particular, let Z and A be such that the bad event

occurs with non-negligible probability during the above ideal-process simulation by S. Then, we

construct a machine M who receives s and with non-negligible probability outputs a commitment

c along with (w

1

; r

1

) and (w

2

; r

2

), where c = aHC

s

(w

1

; r

1

) = aHC

s

(w

2

; r

2

) and w

1

6= w

2

.

M invokes S on Z and A, and emulates the ideal process, while playing the roles of the ideal

functionality and the uncorrupted parties C and V . Simulator S is the same as described above,

with the following two important di�erences:

� Instead of S choosing the pair (s; t) itself in step 1 of its instructions above, it uses the value s

that M receives as input. (Recall that M receives s and is attempting to contradict the binding

property of the commitment relative to this s.)

� If C commits to any values before it is corrupted, the simulation is modi�ed as follows. Instead

of S providing A with a commitment c = aHC

s

(0

k

; r), machine M provides S with the input

w being committed to and then S provides A with c = aHC

s

(w; r). Upon corruption of C,

simulator S then provides A directly with the list of random values r used in generating the

commitments. M can give S these values because it plays the uncorrupted C in the emulation

and therefore knows the w values.

17

If during the emulation by M , the above-described bad event occurs, then M outputs c and the

two pairs (w

1

; r

1

) and (w

2

; r

2

). In order to analyze the success probability of M , �rst notice that

the views of Z and A in this simulation by M are indistinguishable from their views in an ideal

process execution. The only di�erence between the executions is that A does not receive \dummy

commitments" to 0

k

, but real commitments to w. By the hiding property of the commitments,

these are indistinguishable. Therefore, the probability that A generates the messages constituting

a bad event in M 's emulation is negligibly close to the probability that the bad event occurs in the

ideal process simulation by S. The key point here is that S does not need to know the trapdoor t

17

A more \natural" de�nition of M would be to have it run S in the same way as in the simulation, even before C

is corrupted. In such a case, M would need to know the trapdoor in order to proceed when C is corrupted. However,

it is crucial here that M not know the trapdoor (because the binding property only holds when the trapdoor is not

known).
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in order to carry out the emulation. In particular, M carries out its emulation with s only, and

without knowing t. Therefore the binding property of the commitment scheme aHC

s

must hold with

respect to M . However, by the contradicting hypothesis, the bad event occurs in M 's emulation

with non-negligible probability. This contradicts the binding property of the commitment scheme.

4.8 Two-Party Secure Computation for Malicious Adversaries

In this section, we show how to obtain universally composable general secure computation in the

presence of malicious adversaries. Loosely speaking, we present a protocol compiler that transforms

any protocol that is designed for the semi-honest adversarial model into a protocol that guarantees

essentially the same behavior in the presence of malicious adversaries. The compiler is described

in Section 4.8.1. Then, Section 4.8.2 ties together all the components of the construction, from

Sections 4.4, 4.6, 4.7 and 4.8.1.

4.8.1 The Protocol Compiler

As discussed in Section 4.2.2, the F

cp

functionality is used to construct a protocol compiler that

transforms any non-trivial protocol that securely realizes some two-party functionality F in the

presence of semi-honest adversaries (e.g., the protocol of Section 4.4), into a non-trivial protocol

that securely realizes F in the presence of malicious adversaries. In this section we present the

compiler (the same compiler is valid for both static and adaptive adversaries). Now, let � be a

two-party, reactive protocol. Without loss of generality, we assume that � works by a series of

activations, where in each activation, only one of the parties has an input. This is consistent with

our description of general two-party functionalities, see Section 4.3.3. For the sake of simplicity, we

also assume that the lengths of the random tapes speci�ed by � for all activations is k.

The compiled protocol Comp(�) is described in Figure 4.11 below. It uses two copies of F

cp

:

one for when P

1

is the committer and one for when P

2

is the committer. These copies of F

cp

are

denoted F

1

cp

and F

2

cp

, respectively, and are formally identi�ed by session identi�ers sid

1

and sid

2

(where sid

i

can be taken as sid � i). The description of the compiler is from the point of view of

party P

1

; P

2

's instructions are analogous.

Loosely speaking, the e�ect of the compiler on the adversary's capabilities, is that the (mali-

cious) adversary must exhibit semi-honest behavior, or else its cheating will be detected. Recall

that a semi-honest adversary follows the protocol instructions exactly, according to a �xed input

and a uniformly distributed random input. The following proposition asserts that for every mali-

cious adversary A participating in an execution of the compiled protocol (in the F

cp

-hybrid model),

there exists a semi-honest adversary A

0

that interacts with the original protocol in the plain real-

life model such that for every environment Z, the output distributions in these two interactions

are identical. Thus, essentially, a malicious adversary is reduced to semi-honest behavior. We

note that the compiler does not use any additional cryptographic construct other than access to

F

cp

. Consequently, the following proposition holds unconditionally, and even if the adversary and

environment are computationally unbounded.

Proposition 4.8.1 Let � be a two-party protocol and let Comp(�) be the protocol obtained by

applying the compiler of Figure 4:11 to �. Then, for every malicious adversary A that interacts

with Comp(�) in the F

cp

-hybrid model there exists a semi-honest adversary A

0

that interacts with
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Comp(�)

Party P

1

proceeds as follows (the code for party P

2

is analogous):

1. Random tape generation: When activating Comp(�) for the �rst time with session identi�er

sid, party P

1

proceeds as follows:

(a) Choosing a random tape for P

1

:

i. P

1

chooses r

1

1

2

R

f0; 1g

k

and sends (commit; sid

1

; r

1

1

) to F

1

cp

. (P

2

receives a

(receipt; sid

1

) message, chooses r

2

1

2

R

f0; 1g

k

and sends (sid; r

2

1

) to P

1

.)

ii. When P

1

receives a message (sid; r

2

1

) from P

2

, it sets r

1

def

= r

1

1

� r

2

1

(r

1

will serve as

P

1

's random tape for the execution of �).

(b) Choosing a random tape for P

2

:

i. P

1

waits to receive a message (receipt; sid

2

) from F

2

cp

(this occurs after P

2

sends a

commit message (commit; sid

2

; r

2

2

) to F

2

cp

). It then chooses r

1

2

2

R

f0; 1g

k

and sends

(sid; r

1

2

) to P

2

. (P

2

sets r

2

= r

1

2

� r

2

2

to be its random tape for the execution of �.)

2. Activation due to new input: When activated with input (sid; x), party P

1

proceeds as follows.

(a) Input commitment: P

1

sends (commit; sid

1

; x) to F

1

cp

and adds x to the list of inputs x

(this list is initially empty and contains P

1

's inputs from all the previous activations of

�). Note that at this point P

2

receives the message (receipt; sid

1

) from F

1

cp

.

(b) Protocol computation: Let m

1

be the series of �-messages that P

1

received from P

2

in

all the activations of � until now (m

1

is initially empty). P

1

runs the code of � on its

input list x, messages m

1

, and random tape r

1

(as generated above).

(c) Outgoing message transmission: For any outgoing message m that � instructs P

1

to

send to P

2

, P

1

sends (CP-prover; sid

1

; (m; r

2

1

;m

1

)) to F

1

cp

where the relation R

�

for F

1

cp

is de�ned as follows:

R

�

=

�

((m; r

2

1

;m

1

); (x; r

1

1

)) j m = �(x; r

1

1

� r

2

1

;m

1

)

	

In other words, P

1

proves that m is the correct next message generated by � when

the input sequence is x, the random tape is r

1

= r

1

1

� r

2

1

and the series of incoming

�-messages equals m

1

. (Recall that r

1

1

and all the elements of x were committed to by

P

1

in the past using commit invocations of F

1

cp

, and that r

2

1

is the random string sent

by P

2

to P

1

in Step 1(a)ii above.)

3. Activation due to incoming message: When activated with incoming message

(CP-proof; sid

2

; (m; r

1

2

;m

2

)) from F

2

cp

, P

1

�rst veri�es that the following conditions hold. (We

note that F

2

cp

is parameterized by the same relation R

�

as F

1

cp

.)

(a) r

1

2

is the string that P

1

sent to P

2

in Step 1(b)i above.

(b) m

2

equals the series of �-messages received by P

2

from P

1

(i.e., P

1

's outgoing messages)

in all the activations until now.

If any of these conditions fail, then P

1

ignores the message. Otherwise, P

1

appends m to its

list of incoming �-messages m

1

and proceeds as in Steps 2b and 2c.

4. Output: Whenever � generates an output value, Comp(�) generates the same output value.

Implicit in the above protocol speci�cation is the fact that P

1

and P

2

only consider messages that

are associated with the speci�ed identi�er sid.

Figure 4.11: The compiled protocol Comp(�)
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� in the plain real-life model, such that for every environment Z,

real

�;A

0

;Z

� hybrid

F

cp

Comp(�);A;Z

An immediate corollary of this proposition is that any protocol that securely realizes some two-party

functionality F in the semi-honest model can be compiled into a protocol that securely realizes F

in the malicious model. This holds both for static and adaptive adversaries.

Corollary 4.8.2 Let F be a two-party functionality and let � be a non-trivial protocol that securely

realizes F in the real-life model and in the presence of semi-honest adversaries. Then Comp(�)

is a non-trivial protocol that securely realizes F in the F

cp

-hybrid model and in the presence of

malicious adversaries.

We note that the proposition and corollary hold both for the case of adaptive adversaries and for

the case of static adversaries. Here we prove the stronger claim, relating to adaptive adversaries.

We now prove the proposition.

Proof of Proposition 4.8.1: Intuitively, a malicious adversary cannot cheat because the validity

of each message that it sends is veri�ed using the F

cp

functionality. Therefore, it has no choice but

to play in a semi-honest manner (or be detected cheating).

More precisely, let A be a malicious adversary interacting with Comp(�) in the F

cp

-hybrid

model. We construct a semi-honest adversary A

0

that interacts with � in the plain real-life model,

such that no environment Z can tell whether it is interacting with Comp(�) and A in the F

cp

-

hybrid model, or with � and A

0

in the plain real-life model. As usual, A

0

works by running a

simulated copy of A and using the messages sent by A as a guide for its interaction with � and Z.

We use the term external communication to refer to the communication of A

0

with Z and �. The

term internal communication is used to refer to the communication of A

0

with the simulated A.

Before describing A

0

, we note the di�erence between this proof and all previous ones in this paper.

Until now, we constructed an ideal process adversary S from a hybrid or real model adversary

A. In contrast, here we construct a real model adversary A

0

from a hybrid model adversary A.

Furthermore, previously both S and A were malicious adversaries, whereas here A is malicious and

A

0

is semi-honest. We now describe A

0

:

First, A

0

runs a simulated copy of A and simulates for A the Comp(�) messages relating to

the generation of the random string of both parties. Next, A

0

translates each message externally

sent in � to the corresponding message (or sequence of messages) in Comp(�). Each message sent

by the simulated A (supposedly by a corrupted party running Comp(�)) is translated back to a

�-message and sent externally. The rationale of this behavior is that if the simulated A (controlling

the corrupted party) deviates from the protocol, then this would have been detected by the partner

in Comp(�), and thus A

0

can ignore that message. If A does not deviate from the protocol, then A

0

can forward the messages sent by A to the other party as this is allowed behavior for a semi-honest

party. More precisely, A

0

proceeds as follows.

Simulating the communication with the environment: Every input value coming from Z

(in the external communication) is forwarded to the simulated A (in the internal communi-

cation) as if coming from A's environment. Similarly, every output value written by A on its

output tape is copied to A

0

's own output tape (to be read by the external Z).
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Simulating the \random tape generation" phase: When the �rst activation of � takes place,

A

0

internally simulates the \random tape generation" phase of Comp(�). Here we separately

deal with each corruption case:

1. Both parties are not corrupted: A

0

simulates both parties' messages from this stage.

That is, in order to simulate the generation of P

1

's random tape, A

0

internally passes A

the message (receipt; sid

1

), as if coming from F

1

cp

. Furthermore, A

0

chooses a random

r

2

1

, records the value, and simulates P

2

sending P

1

the message (sid; r

2

1

) of Step 1(a)ii in

Figure 4.11. The simulation of P

2

's random tape is analogous.

2. P

1

is not corrupted and P

2

is corrupted: We begin with the generation of P

1

's random

tape. As above, A

0

begins by internally passingA the message (receipt; sid

1

), as if coming

from F

1

cp

. Then, A

0

obtains and records the message (sid; r

2

1

) from the corrupted P

2

(controlled by A in Comp(�)).

We now proceed to the generation of P

2

's random tape. A

0

obtains from A the message

(commit; sid

2

; r

2

2

), as sent by P

2

to F

2

cp

in an execution of Comp(�). Now, let r

2

equal

the random tape of the corrupted P

2

in the external execution of � (A

0

knows this

value because it can read all of the corrupted P

2

's tapes). Then, A

0

sets r

1

2

= r

2

� r

2

2

and internally passes A the message (sid; r

1

2

), as if sent by P

1

to P

2

. (Recall that A

0

is

semi-honest and thus it cannot modify P

2

's random tape r

2

for �. A

0

therefore \forces"

A to use this exact same random tape in the simulated execution of Comp(�).)

3. P

1

is corrupted and P

2

is not corrupted: The simulation of this case is analogous to the

previous one. In particular, for the generation of the corrupted P

1

's random tape, A

0

�rst receives a message (commit; sid

1

; r

1

1

) from A and simulates P

2

sending (sid; r

2

1

) to

P

1

, where r

2

1

= r

1

� r

1

1

and r

1

equals the random tape of the real party P

1

executing �.

4. Both parties are corrupted: When both parties are corrupted, the entire simulation is

straightforward. (A

0

simply runs both malicious parties and at the end, copies the

contents of their output tapes to the output tapes of the semi-honest parties running

�.) We therefore ignore this case from now on.

Simulating an activation due to new input: We deal with the case that P

1

is not corrupted

separately from the case that P

1

is corrupted. Recall that the input commitment phase

consists only of P

1

sending a commit message to F

1

cp

. First, if party P

1

is not corrupted, then

A

0

learns that the external P

1

received new input from the fact that it sends its �rst message

of the execution of �. In response, A

0

simulates the input commitment step by internally

passing (receipt; sid

1

) to A (as A expects to receive from F

1

cp

in a real execution of Comp(�)).

If P

1

is corrupted, then A

0

receives a message (commit; sid

1

; x) from A (who controls P

1

in Comp(�)). Then, A

0

adds x to the list x of inputs committed to by P

1

and passes A

the string (receipt; sid

1

), as if coming from F

1

cp

. Furthermore, A

0

sets P

1

's input tape to

equal x. (Recall that a semi-honest adversary is allowed to modify the input values that the

environment writes on the input tape of a corrupted party. Formally, when the environment

Z noti�es the semi-honest A

0

of the value that it wishes to write on P

1

's input tape, A

0

simulates for A the malicious model where Z writes directly to P

1

's input tape. Then, when

A sends the message (commit; sid

1

; x) in the simulation, A

0

externally instructs Z to write the

value x (as committed to by A) on P

1

's input tape. See Section 4.3.1 for an exact description

of how values are written to the parties' input tapes in the semi-honest model.)

Dealing with protocol messages sent externally by uncorrupted parties: If an uncorrupted

party P

1

externally sends P

2

a message m in the execution of �, then A

0

internally passes A
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the message (CP-proof; sid

1

; (m; r

2

1

;m

1

)), where r

2

1

is the value recorded by A

0

in the simu-

lated generation of P

1

's random tape above, and m

1

is the series of all �-messages received

by P

1

so far. Similarly, if an uncorrupted party P

2

sends P

1

a message m in the execution

of �, then A

0

internally passes A the message (CP-proof; sid

2

; (m; r

1

2

;m

2

)), where r

1

2

and m

2

are the analogous values to the previous case.

Next, A

0

externally delivers messages sent from P

1

to P

2

(resp., from P

2

to P

1

) in the execution

of � when A delivers the corresponding (CP-proof; : : :) message from F

1

cp

to P

2

(resp., from

F

2

cp

to P

1

) in the simulated execution of Comp(�).

Dealing with protocol messages sent internally by corrupted parties: Assume that P

1

is

corrupted. If A, controlling P

1

, sends a message (CP-prover; sid

1

; (m; r

0

2

1

;m

0

1

)), then A

0

works

as follows. First, A

0

has seen all the messagesm

1

received by P

1

and can check that m

0

1

=m

1

.

Likewise, A

0

checks that r

0

2

1

= r

2

1

(recall that r

2

1

is the value recorded by A

0

in the simulated

generation of P

1

's random tape above). Finally, A

0

checks that m = �(x; r

1

1

�r

2

1

;m

1

). (Notice

that since P

1

is corrupted, A

0

has all the necessary information to carry out these checks.) If

all of the above is true, then A

0

internally passes A the message (CP-proof; sid

1

; (m; r

0

2

1

;m

0

1

)),

as A expects to receive from F

1

cp

. Then, whenA delivers this (CP-proof; : : :) message from F

1

cp

to P

2

in the simulation, A externally delivers the message that P

1

, running �, has written on

its outgoing communication tape for P

2

.

18

If any of these checks fail, then A

0

does nothing.

(That is, no message is externally delivered from P

1

to P

2

at this point.) The case of A

sending a CP-proof message in the name of a corrupt P

2

is analogous.

Dealing with corruption of parties:

19

When the simulated A internally corrupts a party P

1

,

A

0

�rst externally corrupts P

1

and obtains all of P

1

's past inputs and outputs, and its random

tape. Next, A

0

prepares for A a simulated internal state of P

1

in protocol Comp(�). This is

done as follows. The only additional internal state that P

1

keeps in Comp(�) is the random

string r

1

1

(this is the string that P

1

commits to in the random tape generation phase of

Comp(�)). Then, A

0

sets r

1

1

= r

1

� r

2

1

, where r

1

is P

1

's random string for � and r

2

1

is the

string that P

2

sent to P

1

in the internal simulated interaction with A of Comp(�). Thus, in

the above way, A

0

prepares a simulated internal state of P

1

in Comp(�) and internally passes

it to A. A

0

works in an analogous way upon the corruption of P

2

.

We argue that Z's view of the interaction with A

0

and parties running � in the real-life semi-

honest model is identical to its view of the interaction with A and parties running Comp(�) in the

F

cp

-hybrid model. (In particular, the view of the simulated A within A

0

is identical to its view

in a real interaction with the same Z and Comp(�) in the F

cp

-hybrid model.) This can be seen

by observing the computational steps in an interaction of Z with A

0

and �. The cases where an

uncorrupted party sends a message are immediate. To see that this holds also in the case where A

0

delivers messages sent by corrupted parties, recall that A

0

forces the random input of a corrupted

P

1

in the internal execution of Comp(�) with A to be the random tape of the semi-honest party

P

1

externally executing �. Furthermore, A

0

modi�es the input tape of the external party P

1

so

that it is the same input as committed to by A. We therefore have that the input and random

tapes that malicious A committed to for the internal P

1

are exactly the same as the input and

random tapes used by the external P

1

. Now, A

0

obtains all the inputs committed to by a corrupted

18

This point requires some elaboration. Notice that if all checks were successful, then the message that P

1

would

send in an execution of � equals m. This is because external P

1

in � and internal P

1

in Comp(�) both have the

same inputs, random tapes and series of incoming messages. Therefore, their outgoing messages are also the same.

19

In the case of static adversaries the simulation remains the same with the exception that this case is ignored.
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P

1

in the simulated interaction with A. Consequently, A

0

is able to verify at every step if the

message m sent by A, in the name of a corrupted P

1

in the simulated interaction, is according to

the protocol speci�cation. If yes, then we are guaranteed that P

1

generates the exact same message

m in the external execution of �. Thus, P

2

receives the same �-message in the execution of �

(where the adversary A

0

is semi-honest) and in the execution of Comp(�) (where the adversary

A is malicious). Furthermore, we are guaranteed that whenever A

0

delivers a message m in the

external execution of �, the simulated A generated and delivered a valid corresponding message

to F

cp

. Finally, the internal state that A receives from A

0

upon corrupting a party is exactly the

same as it receives in a real execution of Comp(�). In particular, observe that in the simulation

of the random tape generation phase when P

1

is not corrupted, A receives no information about

r

1

1

(it only sees a (receipt; sid

1

) message). Therefore, A

0

can choose r

1

1

as any value that it wishes

upon the corruption of P

1

, and in particular it can set it to equal r

1

�r

2

1

(recall that P

1

indeed uses

the random tape r

1

; therefore this is consistent with its true internal state). We conclude that the

ensembles real and hybrid are identical.

4.8.2 Conclusions

Combining Proposition 4.4.3 and Corollary 4.8.2, we have that for any two-party ideal functionality

F , there exists a protocol that securely realizes F in the F

cp

-hybrid model (in the presence of

malicious adversaries). Combining this with Proposition 4.7.1, and using the universal composition

theorem (Theorem 4.3.3), we obtain universally composable general two-party computation in the

F

zk

-hybrid model. That is,

Theorem 4.8.3 (Theorem 4.2.2 { formally restated): Assume that trapdoor permutations exist.

Then, for any well-formed two-party ideal functionality F , there exists a non-trivial protocol that

securely realizes F in the F

zk

-hybrid model in the presence of malicious, static adversaries. Further-

more, if two-party augmented non-committing encryption protocols exist, then for any adaptively

well-formed two-party ideal functionality F , there exists a non-trivial protocol that securely realizes

F in the F

zk

-hybrid model in the presence of malicious, adaptive adversaries.

Recall that, under the assumption that trapdoor permutations exist, functionality

^

F

zk

(the multi-

session extension of F

zk

) can be securely realized in the F

crs

-hybrid model by protocols that uses

a single copy of the reference string. We can thus use the universal composition with joint state

theorem (Theorem 4.3.4) to obtain the following corollary:

Corollary 4.8.4 Assume that trapdoor permutations exist. Then, for any well-formed two-party

ideal functionality F , there exists a non-trivial protocol that securely realizes F in the F

crs

-hybrid

model in the presence of malicious, static adversaries. Furthermore, if two-party augmented non-

committing encryption protocols exist, then for any adaptively well-formed two-party functionality

F , there exists a non-trivial protocol that securely realizes F in the F

crs

-hybrid model in the presence

of malicious, adaptive adversaries. In both cases, the protocol uses a single copy of F

crs

.

4.9 Multi-party Secure Computation

This section extends the two-party constructions of Sections 4.5{4.8 to the multi-party setting,

thereby proving Theorem 4.2.3. The results here relate to a multi-party network where subsets of the

parties wish to realize arbitrary (possibly reactive) functionalities of their local inputs. Furthermore,
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there is an adaptive adversary that can corrupt any number of the parties (in particular, no honest

majority is assumed). Throughout, we continue to assume a completely asynchronous network

without guaranteed message delivery.

This section is organized as follows. We start by showing how to obtain UC multi-party com-

putation in the presence of semi-honest adversaries. Next we de�ne a basic broadcast primitive

which will be essential for our protocols in the case of malicious adversaries. We then generalize

the UC commitment, zero-knowledge and F

cp

functionalities to the multi-party case. Finally, we

construct a multi-party protocol compiler using the generalized F

cp

, and obtain UC multi-party

computation in the malicious adversarial model. In our presentation below, we assume familiarity

with the two-party constructions.

4.9.1 Multi-party Secure Computation for Semi-Honest Adversaries

In this section, we sketch the construction of non-trivial protocols that securely realize any adap-

tively well-formed functionality F for semi-honest adversaries. (Recall the de�nition of adaptively

well-formed functionalities in Section 4.3.3.) The construction is a natural extension of the con-

struction for the two-party case. We assume that the set P of participating parties in any execution

is �xed and known; let this set be P

1

; : : : ; P

`

. Then, the input lines to the circuit (comprising of the

input value, random coins and internal state of the functionality) are shared amongst all ` parties.

That is, for every input bit a to the circuit, the parties hold random bits �

1

; : : : ; �

`

, respectively,

under the constraint that � = �

`

i=1

�

i

. Next, the parties compute the circuit inductively from the

inputs to outputs so that at every step, they hold shares of the lines already computed. Once the

circuit is fully computed, the parties reconstruct the outputs, as required. We now proceed to prove

the following proposition:

Proposition 4.9.1 Assume that trapdoor permutations exist. Then, for any well-formed (multi-

party) ideal functionality F , there exists a non-trivial protocol that securely realizes F in the presence

of semi-honest, static adversaries. Furthermore, if two-party augmented non-committing encryp-

tion protocols exist, then for any adaptively well-formed (multi-party) functionality F , there exists

a non-trivial protocol that securely realizes F in the presence of semi-honest, adaptive adversaries.

As in the two-party case, for adaptive adversaries we assume the existence of two-party augmented

non-committing encryption protocols. Indeed, as in the two-party case this assumption is needed

only to securely realize the two-party functionality F

4

ot

, which plays a central role even in the

multi-party case.

We begin our proof of Proposition 4.9.1 by presenting a non-trivial multi-party protocol �

F

that

securely realizes any adaptively well-formed functionality F in the F

ot

-hybrid model. (We prove

the proposition for the adaptive case only, the static case is easily derived.) We start by de�ning

a boolean circuit C

F

that represents an activation of F . The circuit C

F

has 3m input lines: m

lines represent the input value sent to F in this activation (i.e., this is the input held by one of the

parties). The additional 2m input lines are used for F 's random coins and for holding F 's state at

the onset of the activation. The circuit also has m output lines for each party and m output lines

for �nal state of F after the activation (a total of m`+m lines). For more details on how F and

C

F

are de�ned, see the description for the two-party case in Section 4.4.2 (the extensions to the

multi-party case are straightforward).
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Protocol �

F

(for securely realizing F): Let the set of participating parties equal P =

fP

1

; : : : ; P

`

g. We state the protocol for an activation in which P

1

sends a message to F . When

activated with input (sid; v) for P

1

where jvj � m, the protocol �rst pads v to length m (according

to some standard encoding), and sends a message to all the parties in P, asking them to participate

in a joint evaluation of C

F

. Next, the parties do the following:

1. Input Preparation Stage:

� Input value: P

1

starts by sharing its input v with all parties. That is, P

1

chooses ` random

strings v

1

; : : : ; v

`

2

R

f0; 1g

m

with the constraint that �

`

i=1

v

i

= v. Then, P

1

sends (sid; v

i

)

to P

i

for every 2 � i � `, and stores v

1

.

� Internal state: At the onset of each activation, the parties hold shares of the current

internal state of F . That is, let c denote the current internal state of F , where jcj = m

and m is an upper bound on the size of the state string stored by F . Then, party P

i

holds

c

i

2 f0; 1g

m

and all the c

i

's are random under the restriction that �

`

i=1

c

i

= c. (In the

�rst activation of F , the internal state is empty and so the parties hold �xed shares 0 that

denote the empty state.)

� Random coins: Upon the �rst activation of F only, each party P

i

locally chooses a random

string r

i

2

R

f0; 1g

m

. The strings r

1

; : : : ; r

`

then constitute shares of the random coins

r = �

`

i=1

r

i

to be used by C

F

in all activations.

At this point, the parties hold (random) shares of every input line of C

F

.

2. Circuit Evaluation: The parties proceed to evaluate the circuit C

F

in a gate-by-gate man-

ner. Let � and � denote the bit-values of the input lines to a given gate. Then every P

i

holds

bits �

i

; �

i

such that � =

P

`

i=1

�

i

and � =

P

`

i=1

�

i

. The gates are computed as follows:

� Addition gates: If the gate is an addition gate, then each P

i

locally sets its share of the

output line of the gate to be 

i

= �

i

+ �

i

. (Thus

P

`

i=1



i

=

P

`

i=1

(�

i

+ �

i

) = �+ � = .)

� Multiplication gates: If the gate is a multiplication gate, then the parties need to compute

their shares of  =

�

P

`

i=1

�

i

��

P

`

i=1

�

i

�

. The key to carrying out this computation is the

following equality:

 

`

X

i=1

�

i

! 

`

X

i=1

�

i

!

= ` �

`

X

i=1

�

i

�

i

+

X

1�i<j�`

(�

i

+ �

j

) � (�

i

+ �

j

)

(See [44, Section 3.2.2] for a justi�cation of this equality.) Notice that each party can

compute a share of the �rst sum locally (by simply computing �

i

� �

i

and multiplying

the product by `). Shares of the second sum can be computed using activations of the

two-party oblivious transfer functionality F

4

ot

. (That is, for each pair i and j, parties P

i

and P

j

compute shares of (�

i

+�

j

) � (�

i

+�

j

). This is exactly the same computation as in

the two-party case and can be carried out using F

4

ot

.) After computing all of the shares,

each party P

i

locally sums its shares into a value 

i

, and we have that

P

`

i=1



i

= , as

required.

3. Output stage: Following the above stage, the parties hold shares of all the output lines of

the circuit C

F

. Each output line of C

F

is either an output addressed to one of the parties

P

1

; : : : ; P

`

, or belongs to the internal state of C

F

after the activation. The activation concludes

as follows:
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� P

i

's output (for every i): For every j 6= i, party P

j

sends P

i

all of its shares in P

i

's output

lines. P

i

then reconstructs every bit of its output value by adding the appropriate shares,

and writes the result on its output tape.

� Internal state: P

1

; : : : ; P

`

all locally store the shares that they hold for the internal state

lines of C

F

. (These shares are to be used in the next activation.)

Recall that since we are working in an asynchronous network, there is no guarantee on the order of

message delivery and messages may be delivered \out of order". In contrast, to maintain correctness

the protocol must be executed according to its prescribed order (e.g., new activations must begin

only after previous ones have completed and gates may be evaluated only after the shares of the

input lines are known). As in the two-party case, this is dealt with by assigning unique identi�ers

to every message sent during all activations. A full description of how this can be achieved appears

in Section 4.4.2. By having the parties store messages that arrive before they are relevant in

appropriate bu�ers (where the time that a message becomes relevant is self-evident from the unique

tags), we have that all honest parties process the messages in correct order. Thus, it makes no

di�erence whether or not the adversary delivers the messages according to the prescribed order and

we can assume that all messages are delivered in order.

This completes the description of �

F

. We now sketch the proof that �

F

securely realizes any

adaptively well-formed multi-party functionality F :

Claim 4.9.2 Let F be an adaptively well-formed multi-party functionality. Then, protocol �

F

securely realizes F in the F

ot

-hybrid model, in the presence of semi-honest, adaptive adversaries.

Proof (sketch): The proof of this claim is very similar to the two-party case (i.e., Claim 4.4.4).

First, it is clear that �

F

correctly computes F (i.e., all parties receive outputs that are distributed

according to F). Next, we show the existence of a simulator for �

F

. The basis for the simulator's

actions is the fact that, as long as there is at least one uncorrupted party, all the intermediary

values seen by the parties are uniformly distributed.

Let A be a semi-honest, adaptive adversary; we construct a simulator S for the ideal process

F . Simulator S internally invokes A and works as follows:

Simulating the communication with Z: The input values received by S from Z are written

on A's input tape, and the output values of A are copied to S's own output tape.

Simulation of the input stage: Recall that in this stage, the only messages sent are random

strings v

2

; : : : ; v

`

that P

1

sends to P

2

; : : : ; P

`

. Thus, the simulation of this stage involves

simulating P

1

sending `� 1 random strings v

2

; : : : ; v

`

to P

2

; : : : ; P

`

. (If P

1

is corrupted, then

v

2

; : : : ; v

`

are chosen according to P

1

's random tape. Otherwise, S chooses each v

i

uniformly.)

Simulation of the circuit evaluation stage: The addition gates require no simulation since

they constitute local computation only. The multiplication gates involve simulation of pair-

wise oblivious transfer calls to F

ot

. We describe the simulation of these oblivious transfers

separately for each corruption case.

1. Oblivious transfers run with an uncorrupted receiver: In the case that the receiver is not

corrupted, the only message seen by A in a call to F

ot

is the session-identi�er used.

This is therefore easily simulated by S. (If the sender is corrupted, then its input table

to F

ot

is seen by A. However, this is already de�ned because it is a function of the

sender's view which is known to A.)
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2. Oblivious transfers run with an uncorrupted sender and a corrupted receiver: In this

case, the receiver obtains a uniformly distributed bit 

2

as output from the oblivious

transfer. Therefore, S merely chooses 

2

uniformly.

3. Oblivious transfers run with a corrupted sender and receiver: Simulation is straightfor-

ward when both participating parties are corrupted (all input values and random tapes

are already de�ned).

Simulation of the output stage: S simulates the parties sending strings in the output stage in

order to reconstruct their outputs. First, we note that the shares of the input lines, for any

party P

j

that is already corrupted, are already de�ned. (This is because A holds the view of

P

j

and this view de�nes the shares that P

j

holds of all the output lines.) This means that

the strings that P

j

sends in the output stage are also de�ned. Now, S de�nes the strings

received by a party P

i

in the output stage as follows. If P

i

is not corrupted, then S simulates

all the other uncorrupted parties sending P

i

uniformly distributed strings. If P

i

is corrupted,

then S has P

i

's output y

i

. S uses this to choose random strings for the honest parties so that

the exclusive-or of these strings along with the de�ned output strings sent by the corrupted

parties equals y

i

. (Thus, P

i

's output is reconstructed to y

i

, as required.) Simulator S carries

out this simulation for all parties P

1

; : : : ; P

`

.

Simulation of corruptions before the last honest party is corrupted: When some party P

i

is corrupted, S should provide A with the internal state of P

i

for all the activations of F (i.e.,

for all the evaluations of C

F

) so far. All the evaluations are dealt with independently from

each other (except that P

i

's output shares of F 's internal state from one evaluation equals

its input shares of F 's internal state in the following evaluation). Also all evaluations, ex-

cept perhaps for the current one, are complete. Here we describe how S deals with a single,

complete activation. (If the current activation is not complete then S follows its instructions

until the point where P

i

is corrupted.)

Upon the corruption of party P

i

, simulator S receives P

i

's input x

i

and output y

i

, and should

generate P

i

's view of the simulated protocol execution. This view should be consistent with

the messages sent in the simulation so far. We begin with the simulation of P

i

's view of the

input stage. If i = 1 (i.e., P

1

is the party that is corrupted), then S obtains the input value

v. Let v

2

; : : : ; v

`

be the random strings that P

1

sent P

2

; : : : ; P

`

in the simulated interaction.

Then, S de�nes P

1

's share of the input to equal v

1

so that �

`

i=1

v

i

= v. S continues for any P

i

(i.e., not just for i = 1) as follows. S chooses random strings r

i

2

R

f0; 1g

m

and c

i

2

R

f0; 1g

s

and sets P

i

's inputs to C

F

's random-coins and internal state to be r

i

and c

i

, respectively.

Having completed the simulation of P

i

's view of the input stage, S proceeds to simulate P

i

's

view in the oblivious transfers of the protocol execution. Below we describe the simulation

for all the multiplication gates except for those immediately preceding output lines (these will

be dealt with separately below). We distinguish four cases:

1. Oblivious transfers run with P

i

as sender and an uncorrupted P

j

as receiver: Recall that

in every oblivious transfer, the sender inputs a random-bit 

1

to mask the outcome. In

this case, S simply chooses 

1

uniformly. (This is the random bit that P

i

supposedly

chose upon computing this gate.)

2. Oblivious transfers run with an uncorrupted P

j

as sender and P

i

as receiver: In this

case, in the execution of �

F

, party P

i

receives a uniformly distributed bit 

2

as output

from the oblivious transfer. Therefore, S chooses 

2

uniformly.
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3. Oblivious transfers run with P

i

as sender and an already corrupted P

j

as receiver: P

j

is

already corrupted and therefore the value 

2

that it received from this oblivious transfer

has already been �xed in the simulation. Furthermore, both P

i

and P

j

's circuit inputs

v

i

; v

j

, r

i

; r

j

and c

i

; c

j

have been �xed, as too have their views for all the multiplication

gates leading to this one. (S computes the view inductively from the inputs to the out-

puts.) Thus, the input lines to this oblivious transfer are �xed, as too is P

j

's output from

the oblivious transfer. This fully de�nes the oblivious transfer table that P

1

constructs

in the protocol execution (as well as its \random" bit 

1

). Therefore, S constructs the

table according to the protocol instructions.

4. Oblivious transfers run with an already corrupted P

j

as sender and P

i

as receiver: As in

the previous case, the input lines and the random-bit 

1

that P

j

inputs into the oblivious

transfer are �xed. Since P

i

's input into this oblivious transfer is also already �xed, this

fully de�nes the bit 

2

that P

i

receives as output.

As we have mentioned, there is a di�erence regarding the simulation of multiplication gates

that precede output lines. (As in the two-party case, we assume for simplicity that every

output line is preceded by a multiplication gate.) We describe the simulation of these gates

together with the output stage. During the simulation of the output stage, P

i

received

uniformly distributed strings y

j

i

from every party P

j

(the strategy for choosing these values is

described in the item on \simulation of the output stage"). Note that all the y

j

i

's (for j 6= i)

are de�ned and �xed.

20

Upon the corruption of P

i

, simulator S receives P

i

's output string y

i

.

The aim of S is to have P

i

's output lines de�ne shares y

i

i

such that �

`

j=1

y

j

i

= y

i

(and thus P

i

's

output reconstruction will be as required). This is done as follows. Recall that the evaluation

of each multiplication gate is comprised of a series of oblivious transfers between all pairs

of parties. Since P

i

is not the last honest party to be corrupted, there exists at least one

honest party P

l

with which P

i

runs a pairwise oblivious transfer in the computation of this

gate. All the oblivious transfers of this gate apart from this one are simulated as described

above. These simulations all provide bit-shares to P

i

: let b denote the sum of these shares. It

remains to simulate this last oblivious transfer between P

i

and P

l

. Let 

i

be the bit of y

i

i

that

P

i

is supposed to receive as its share of the output line that follows from this multiplication

gate. Now, the speci�c oblivious transfer between P

i

and P

l

de�nes one share of the output

bit 

i

, and all the other shares have already been �xed and sum to b. Thus, the aim of S is to

have P

i

's output from the oblivious transfer with P

l

equal 

i

+ b (and thus P

i

's overall output

from the gate will be 

i

as required). However, P

l

is not corrupted. Therefore, whether P

i

is the sender or P

l

is the sender, P

i

's output can be chosen arbitrarily by S. (See the �rst 2

of the 4 simulation cases above; in those cases, S merely chooses the output bit randomly.)

Thus, S sets the output bit to be 

i

+ b and P

i

receives the correct bit. This completes the

simulation for the corruption of P

i

.

Simulation of the corruption of the last honest party: Let P

i

be the party that is corrupted

last. If i = 1, then S obtains the input-value v into this activation. (As above, in this case,

S de�nes P

1

's share of the input v

1

to be so that �

`

j=1

v

j

= v.) In all cases, S obtains the

output-value y

i

that P

i

receives. Furthermore, since F is adaptively well-formed, S obtains

the random tape of F . Given this information, S computes the internal state of F in the

beginning of this activation. Let c be this state string and let r equal F 's length-m random

20

Actually, corruption can happen in the middle of the output stage and in such a case only some of the output

strings may be �xed. In such a case, �rst (internally) �x all the output strings and then continue as here.
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tape. Now, all other parties are corrupted and thus the shares of the random tape r

j

are

�xed for every j 6= i. S takes P

i

's share of the random tape to be r

i

so that �

`

j=1

r

j

= r.

Likewise, except for c

i

, all the shares of the state input c

j

are �xed. S thus de�nes c

i

so that

�

`

j=1

c

j

= c. This completes the simulation of the input stage.

Next S simulates the circuit evaluation stage, working from the input gates to the output

gates, in the same way as described above (i.e., for the case that P

i

is not the last honest party

corrupted). Notice above that when P

i

runs an oblivious transfer with an already corrupted

party, then all the inputs and outputs are essentially �xed. Thus, S merely computes the bit

that P

i

should see in each oblivious transfer as in the above cases. We therefore have that

the simulation of this stage is a deterministic process. This simulation also de�nes the output

shares that P

i

receives, thus concluding the simulation.

Output delivery: S delivers the output from F to an uncorrupted party P

i

when A delivers all

the output shares y

j

i

that parties P

j

send P

i

in the simulation.

It remains to show that no environment Z can distinguish the case that it interacts with S and F

in the ideal process or with A and �

F

in the F

ot

-hybrid model. The analysis is similar to the one

for the two-party case and is omitted.

4.9.2 Authenticated Broadcast

In order to obtain our result, we assume that each set of parties that engage in a protocol execution

have access to an authenticated broadcast channel. The broadcast channel is modeled by the ideal

broadcast functionality, F

bc

, as de�ned in Figure 4.12. In our protocols for malicious adversaries,

all communication among the parties is carried out via F

bc

.

Functionality F

bc

F

bc

proceeds as follows, running with parties P

1

; : : : ; P

n

and an adversary S:

� Upon receiving a message (broadcast; sid;P ; x) from P

i

, where P is a set of parties, send

(broadcast; sid; P

i

;P ; x) to all parties in P and to S, and halt.

Figure 4.12: The ideal broadcast functionality

Note that the F

bc

-hybrid model does not guarantee delivery of messages, nor does it provide

any synchrony guarantees for the messages that are delivered. It only guarantees that no two

uncorrupted parties in P will receive two di�erent message with the same sid. We now show

that F

bc

can be securely realized, for any number of corrupted parties and without any setup

assumptions.

Protocol 2 (universally composable broadcast):

� Input: P

i

has input (broadcast; sid;P; x).

� The Protocol:

1. P

i

sends (sid;P; x) to all parties.

2. Denote by (P

j

; x

j

) the message received by P

j

in the previous round. Then, every party P

j

(for j 6= i) sends its message (sid;P

j

; x

j

) to all other parties.
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3. Denote the message received by P

j

from P

k

in the previous round by (P

j

k

; x

j

k

) (recall

that x

j

denotes the value P

j

received from P

i

in the �rst round). Then, P

j

outputs

(broadcast; sid; P

i

;P; x

j

) if it belongs to the set P, if it received all the messages (P

j

k

; x

j

k

)

and this is the only message that it saw (i.e., if it received (P

j

k

; x

j

k

) from every P

k

and it

holds that all these messages are the same). Otherwise, it outputs nothing.

We note that if P

j

did not receive any value in the �rst round, then it does not output

anything.

Proposition 4.9.3 Protocol 2 securely realizes F

bc

(in the universally composable framework).

Proof: Let A be a real-model adversary attacking Protocol 2. We construct an ideal model

adversary S for A that interacts with F

bc

. We di�erentiate between two cases: in the �rst the

dealer is corrupted (and thus is controlled by A), and in the second it is honest. Let P

i

be the

dealer in this execution.

� Case 1 { P

i

is corrupt: In the �rst round, A (controlling P

i

) sends messages to ` of the honest

parties for some `; denote these messages by (P

i

1

; x

i

1

); : : : ; (P

i

`

; x

i

`

). Simulator S receives all

these messages and then simulates the messages sent by the honest parties in the second round.

Furthermore, S obtains all the messages sent by A in the second round.

Now, if there exist j and k (1 � j; k � `) such that (P

i

j

; x

i

j

) 6= (P

i

k

; x

i

k

), then S sends

nothing to F

bc

. Otherwise, let x be the message sent by A. Then, S sends x to the ideal

functionality F

bc

. Next, S de�nes the set of honest parties to whom to deliver the output

(broadcast; sid; P

i

;P; x) from F

bc

. This set of parties is de�ned to be those parties in P to

whom A delivers all the second round messages and whose messages all contain the same x. S

concludes by delivering the messages from the F

bc

functionality to these parties, and only to

these parties.

� Case 2 { P

i

is honest: S receives (broadcast; sid; P

i

;P; x) from F

bc

and simulates P

i

's sending

x to all the parties controlled by A. Then, S receives back messages sent by A to the honest

parties. S de�nes the set of parties to whom to deliver output as those in P who receive all

the second round messages and who only see x. Then, S delivers the messages from the F

bc

functionality to these and only to these parties.

We claim that the global output of an ideal execution with S is identically distributed to the global

output of a real execution with A. We �rst deal with the case that P

i

is corrupt. If A sends two

di�erent messages in round 1 (i.e., if there exist j and k such that (P

i

j

; x

j

) 6= (P

i

j

; x

k

)), then by

the protocol de�nition, all honest parties will see both (P

i

j

; x

j

) and (P

i

k

; x

k

). (Here it is important

that parties do not output (P; x) unless seeing the round 2 messages of all parties.) Therefore, in

a real execution all honest parties will output nothing. This is identical to the case that S does

not send anything to F

bc

in an ideal execution. In contrast, if A sends the same message x to all

honest parties in the �rst round, then the outputs depend on what A sends in the second round.

Since S receives all these messages from A, it can see which parties would output (P; x) and which

parties would output nothing. S thus delivers the (broadcast; :::) messages from F

bc

only to the

parties which would output x in the real model. We conclude that the output is identical.

In the case that P

i

is honest, A can cause honest parties to output nothing (rather than x) by

sending them messages (P

0

; x

0

) 6= (P; x) in the second round or by not delivering messages. As

above, S receives all these messages and therefore its delivery of (broadcast; :::) messages from F

bc

accurately represents exactly what happens in a real execution.
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4.9.3 One-to-Many Commitment, Zero-Knowledge and Commit-and-Prove

One-to-Many UC commitment. We begin by de�ning a one-to-many extension of the UC

commitment functionality, denoted F

1:M

mcom

. In this functionality, one party commits to a value to

many receivers. The formal de�nition appears in Figure 4.13. Similarly to the two-party case, the

commitment functionality is presented as a multi-session functionality. From here on, the JUC

theorem of [21] is applied and we consider only single-session functionalities (see Section 4.3.2 for

more explanation). We denote the single session analog to F

1:M

mcom

by F

1:M

com

.

Functionality F

1:M

mcom

F

1:M

mcom

proceeds as follows, running with parties P

1

; : : : ; P

n

and an adversary S:

� Commit Phase: Upon receiving a message (commit; sid; ssid;P ; b) from P

i

where P is a set of

parties and b 2 f0; 1g, record the tuple (ssid; P

i

;P ; b) and send the message (receipt; sid; ssid; P

i

;P)

to all the parties in P and to S. Ignore any future commit messages with the same ssid.

� Prove Phase: Upon receiving a message (reveal; sid; ssid) from P

i

: If a tuple (ssid; P

i

;P ; b) was

previously recorded, then send the message (reveal; sid; ssid; b) to all parties in P and to S. Other-

wise, ignore.

Figure 4.13: One-to-Many multi-session commitment

The key observation in realizing the F

1:M

mcom

functionality is that Protocol UAHC (of Section 4.5)

that securely realizes the two-party commitment functionality F

mcom

is non-interactive. Therefore,

the one-to-many extension is obtained by simply having the committer broadcast the commitment

string of Protocol UAHC to all the participating parties on the broadcast channel. The proof

that this protocol realizes F

1:M

mcom

is almost identical to the proof that Protocol UAHC realizes

F

mcom

, and is omitted. We do, however, mention one important point. The commitment string

is broadcast using the F

bc

functionality which ensures that only one message is broadcast using

a given session identi�er. This is important because otherwise the adversary could broadcast two

di�erent commitment strings c

1

and c

2

, where it delivers c

1

to some of the honest parties and

c

2

to the others. This is, of course, not allowed by the F

1:M

mcom

functionality that ensures that all

parties receive the same commitment for the same identi�er pair (sid; ssid). We therefore have the

following:

Proposition 4.9.4 Assuming the existence of trapdoor permutations, there exists a (non-interactive)

protocol that securely realizes F

1:M

mcom

in the (F

crs

;F

bc

)-hybrid model

21

, in the presence of malicious,

adaptive adversaries. Furthermore, this protocol uses only a single copy of F

crs

.

One-to-Many UC zero-knowledge. Similarly to the one-to-many extension of commitments,

we de�ne a one-to-many functionality where one party proves a statement to some set of par-

ties. The de�nition of the (single-session) one-to-many zero-knowledge functionality, denoted F

1:M

zk

,

appears in Figure 4.14. (For simplicity, in the multi-party case we concentrate on single-session

zero-knowledge, constructed using a single-session version of F

1:M

mcom

. These protocols will later be

composed, using universal composition with joint state, to obtain protocols that use only a single

copy of the reference string when realizing all the copies of of F

1:M

zk

.)

21

In the (F

crs

;F

bc

)-hybrid model, all parties have ideal access to both the common reference string functionality

F

crs

and the ideal broadcast functionality F

bc

.
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Functionality F

1:M

zk

F

1:M

zk

proceeds as follows, running with parties P

1

; : : : ; P

n

and an adversary S, and parameterized with

a relation R:

� Upon receiving a message (ZK-prover; sid;P ; x; w) from a party P

i

where P is a set of parties: If

R(x;w) = 1, then send (ZK-proof; sid; P

i

;P ; x) to all parties in P and to S and halt. Otherwise,

halt.

Figure 4.14: Single-session, One-to-Many zero-knowledge

As with the case of commitments, a non-interactive protocol that realizes the two-party zero-

knowledge functionality F

zk

could be directly used to realize F

1:M

zk

. For the case of static adversaries,

the protocol of [26] can be used. However, for the case of adaptive adversaries, no non-interactive

protocol is known. Rather, we base the one-to-many extension on the interactive UC zero-knowledge

protocol of [16]. Their protocol is basically that of parallel Hamiltonicity (cf. [11]), except that the

commitments used are universally composable. Our extension of this protocol to the one-to-many

case follows the methodology of [44] and is presented in the proof of the following proposition:

Proposition 4.9.5 There exists a protocol that realizes F

1:M

zk

in the (F

1:M

com

;F

bc

)-hybrid model, in

the presence of malicious, adaptive adversaries.

Proof (sketch): The protocol for realizing F

1:M

zk

works by having the prover separately prove the

statement in question to all parties. The protocol used in each of these pairwise proofs is exactly

the two-party protocol of [16], with the exception that the messages of each proof are broadcast to

all parties. (This also means that all commitments and decommitments are run using F

1:M

com

, rather

than the two-party F

com

. (F

1:M

com

is the single-session parallel to F

1:M

mcom

.) Also, the protocol must

make sure that each invocation of broadcast will have a unique session ID. This can be done in

standard ways, given the unique session ID of the zero-knowledge protocol.) Then, a party accepts

the proof, outputting (ZK-proof; sid; P

i

;P; x), if and only if all the pairwise proofs are accepting.

Note that, other than the use of F

1:M

com

, no cryptographic primitives are used. Indeed, security of

this protocol in the F

1:M

com

-hybrid model is unconditional.

Next, note that it is indeed possible for the parties to know whether all the pairwise proofs are

accepting. This is because all the commitments and messages are seen by all the parties and the

zero-knowledge proof of Hamiltonicity used by [16] is publicly veri�able (i.e., it is enough to see

the transcript of prover/veri�er messages to know whether or not the proof was accepted by the

veri�er).

Now, recall that in order to prove the universal composability of F

1:M

zk

, we must present an

ideal-process adversary (i.e., a simulator) that simulates proofs for the case that the prover is not

corrupted and veri�ers are corrupted, and is also able to extract the witness from an adversarially

generated proof (for the case that the prover is corrupted). When simulating a proof for a corrupted

veri�er, the simulator for F

1:M

zk

works simply by running the simulator of the two-party protocol

of [16] for every pairwise proof. On the other hand, in order to extract the witness from a corrupted

prover, �rst note that it is possible to run the two-party extractor for any pairwise proof in which

the veri�er is not corrupted. Now, the scenario in which we need to run the extractor here is where

the prover is corrupted and at least one veri�er is not (otherwise, all parties are corrupted and

simulation is straightforward). Therefore, there exists one pairwise proof in which the veri�er is

not corrupted. The simulator for F

1:M

zk

thus runs the simulator for the protocol of [16] for this proof.
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Finally, we note that the simulator delivers the output of F

1:M

zk

to the veri�ers if and only if all

veri�ers accept in the simulation. (Thus, the parties' outputs in the ideal process are the same as

in a real execution.) This concludes the proof sketch.

One-to-Many UC commit-and-prove. The one-to-many extension of the commit-and-prove

functionality, denoted F

1:M

cp

, is presented in Figure 4.15. The functionality handles a single session

only, and requires that all commitments and proofs are to the same set P. (This set is �xed the

�rst time a commit is sent with a given sid.)

Functionality F

1:M

cp

F

1:M

cp

proceeds as follows, running with parties P

1

; : : : ; P

n

and an adversary S, and parameterized by a

value k and a relation R:

� Commit Phase: Upon receiving a message (commit; sid;P ; w) from P

i

where P is a set of parties

and w 2 f0; 1g

k

, append the value w to the list w, record P , and send the message (receipt; sid; P

i

;P)

to the parties in P and S. (Initially, the list w is empty. Also, if a commit message has already

been received, then check that the recorded set of parties is P . If it is a di�erent set, then ignore

this message.)

� Prove Phase: Upon receiving a message (CP-prover; sid; x) from P

i

, where x 2 f0; 1g

poly(k)

,

compute R(x;w): If R(x;w) = 1, then send the message (CP-proof; sid; x) to the parties in P and

to S. Otherwise, ignore.

Figure 4.15: One-to-Many commit-and-prove

Our protocol for securely realizing the one-to-many commit-and-prove functionality F

1:M

cp

is

constructed in the F

1:M

zk

-hybrid model. The protocol, denoted ACP

1:M

, is very similar to Protocol

ACP for the two-party case. Recall that Protocol ACP begins with the receiver choosing a pair

(s; t), where s = f(t) and f is a one-way function. The value s is then used by the committer who

commits to w by sending c = aHC

s

(w; r). This is generalized in the natural way by having every

receiving party P

j

choose a pair (s

j

; t

j

), and the committer then sending c

j

= aHC

s

j

(w; r

j

) for all

values of s

j

. In addition, the committer proves that all these commitments are to the same w (this

is done to prevent the committer from committing to di�erent w's for di�erent s

j

's). We de�ne a

compound commitment scheme as follows. Let ~s = (s

1

; : : : ; s

`

) and ~r = (r

1

; : : : ; r

`

). Then, de�ne

aHC

~s

(w;~r) = (aHC

s

1

(w; r

1

); : : : ; aHC

s

`

(w; r

`

)). Restating the above, the commit phase consists of

the committer committing to w using the compound scheme aHC

~s

and proving that the commitment

was generated correctly.

The multi-party protocol ACP

1:M

uses three di�erent copies of F

1:M

zk

, where each copy is param-

eterized by a di�erent relation. The copies are denoted F

1:M

zk;t

(for the initialization phase), F

1:M

zk;c

(for the commit stage) and F

1:M

zk;p

(for the prove stage). These functionalities are di�erentiated by

session identi�ers sid

T

, sid

C

and sid

P

, respectively. These identi�ers should be unique, as long as

the session ID of the current instance of ACP

1:M

is unique. One way to guarantee this is setting

sid

T

= sid � T , sid

C

= sid � C and sid

P

= sid � P , where sid is the session ID of the current

instance of ACP

1:M

. The protocol is presented in Figure 4.16.

Proposition 4.9.6 Assuming the existence of one-way functions, Protocol ACP

1:M

of Figure 4:16

securely realizes F

1:M

cp

in the F

1:M

zk

-hybrid model, in the presence of adaptive adversaries.
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Protocol ACP

1:M

� Auxiliary Input: A security parameter k, and a session identi�er sid.

� Initialization phase:

The �rst time that the committer P

i

wishes to commit to a value to the set of parties P using

the identi�er sid, the parties in P execute the following initialization phase. (To simplify notation,

assume that P = fP

1

; : : : ; P

`

g for some `, and that the sender belongs to P . Also, the parties ignore

incoming messages that are addressed to a set P

0

that is di�erent than the set P speci�ed in the

�rst message.)

1. P

i

sends a (broadcast; sid;P ; begin-commit) message to F

bc

to indicate that it wishes to initiate

a commit activation.

2. Upon receiving (broadcast; sid; P

i

;P ; begin-commit), each party P

j

2 P records the triple

(sid; P

i

;P). From here on, the parties only relate to messages with identi�er sid if they are

associated with the committer/prover P

i

and set of parties P .

Then, every P

j

chooses t

j

2

R

f0; 1g

k

, computes s

j

= f(t

j

) (where f is a one-way function),

and sends (ZK-prover; sid

T

;P ; s

j

; t

j

) to F

1:M

zk;t

, where F

1:M

zk;t

is parameterized by the relation R

T

de�ned by:

R

T

def

= f(s; t) j s = f(t)g

3. Upon receiving (ZK-proof; sid

T

; P

j

;P ; s

j

) from F

1:M

zk;t

, all the parties in P (including the com-

mitter P

i

) record the value s

j

. This phase concludes when all parties in P have sent the

appropriate ZK-proof message, and thus when all the parties hold the vector ~s = (s

1

; : : : ; s

`

).

The parties now proceed to the commit phase.

� Commit phase: (P

i

's input is (commit; sid;P ; w), where w 2 f0; 1g

k

.)

1. P

i

computes the compound commitment c = aHC

~s

(w;~r) where the vector ~s is the one obtained

in the initialization phase, and the r

j

's in ~r are uniformly chosen.

P

i

then sends (ZK-prover; sid

C

;P ; (~s; c); (w;~r)) to F

1:M

zk;c

, where F

1:M

zk;c

is parameterized by the

relation R

C

de�ned by:

R

C

def

= f(~s; c); (w;~r) j c = aHC

~s

(w;~r)g

(That is, R

C

veri�es that c is a valid compound commitment to the value w, using ~s.)

In addition, P

i

stores in a list w all the values w that were sent, and in lists c and r the

corresponding commitment values c and random strings ~r = (r

1

; : : : ; r

`

).

2. Upon receiving (ZK-proof; sid

C

; P

i

;P ; (~s

0

; c)) from F

1:M

zk;c

, every party P

j

2 P veri�es that

~s

0

= ~s (where ~s equals the list of strings that it recorded in the initialization phase). If yes,

then P

j

outputs (receipt; sid) and adds the commitment c to its list c. (Initially, c is empty.)

Otherwise, the parties in P ignore the message.

� Prove phase: (P

i

's input is (CP-prover; sid; x).)

1. P

i

sends (ZK-prover; sid

P

; P

i

;P ; (x;~s; c); (w; r)) to F

1:M

zk;p

, where c, w and r are the lists de-

scribed above. Let w = (w

1

; : : : ; w

m

), c = (c

1

; : : : ; c

m

) and r = (~r

1

; : : : ; ~r

m

). Then, F

1:M

zk;p

is

parameterized by the relation R

P

de�ned by:

R

P

def

= f((x;~s; c); (w; r)) j R(x;w) = 1 & 8j c

j

= aHC

~s

(w

j

;~r

j

)g

That is, R

P

veri�es that R(x;w) = 1 and that c contains commitments to the previously

committed values w.

2. Upon receiving (ZK-proof; sid

P

; P

i

;P ; (x;~s

0

; c)) from F

1:M

zk;p

, every party in P veri�es that ~s

0

= ~s

and that its list of stored commitments equals c. If yes, then it outputs (CP-proof; sid; x).

Otherwise, it ignores the message.

Figure 4.16: A protocol for realizing F

1:M

cp

for adaptive adversaries
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Proof (sketch): The proof of this proposition is very similar to the proof of Proposition 4.7.2

for the two-party case. Let A be an adaptive adversary who operates against Protocol ACP

1:M

in the F

1:M

zk

-hybrid model. We construct a simulator S such that no environment Z can tell with

non-negligible probability whether it is interacting with A and parties running Protocol ACP

1:M

in

the F

1:M

zk

-hybrid model or with S in the ideal process for F

1:M

cp

. Simulator S operates by running a

simulated copy of A and using A in order to interact with Z and F

1:M

cp

. S works as follows.

Simulating the initialization phase: S records the pairs (s

1

; t

1

); : : : ; (s

`

; t

`

) from the initializa-

tion phase of an execution, and de�nes ~s = (s

1

; : : : ; s

`

). For every uncorrupted receiving

party P

j

, simulator S chooses the pair (s

j

; t

j

) by itself. For corrupted receiving parties, the

pairs are chosen by the simulated A and S obtains the t

j

's from A's messages to F

1:M

zk;t

.

Simulating the case where the committer is corrupted: We �rst describe how to simulate

the commit phase. Whenever A (controlling P

i

) wishes to commit to a value, S obtains

the message (ZK-prover; sid

C

;P; (~s; c); (w;~r)) that A sends to F

1:M

zk;c

. S checks that ~s is as

generated in the initialization phase and that c = aHC

~s

(w;~r). If yes, then S internally passes

A the message (ZK-proof; sid

C

;P; (~s; c)) and externally sends (commit; sid;P; w) to F

1:M

cp

.

Furthermore, S adds the commitment c to its list of commitments c.

We now describe the simulation of the prove phase. Whenever A wishes to prove a statement,

S receives the message (ZK-prover; sid

P

; (x;~s; c); (w; r)) that A sends to F

1:M

zk;p

. S then checks

that the list c is as stored above and that R(x;w) = 1. If yes, then S internally passes

(ZK-proof; sid

P

; (x;~s; c)) to A and externally sends (CP-prover; sid; x) to F

1:M

cp

. Otherwise, it

ignores the message.

Simulating the case where the committer is not corrupted: Whenever an uncorrupted party

P

i

commits to an unknown value w, simulator S hands A a commitment to 0

k

as the com-

mitment value. More precisely, whenever S receives from F

1:M

cp

a message (receipt; sid; P

i

;P)

where P

i

is uncorrupted, simulator S computes c = aHC

~s

(0

k

;~r) and hands A the message

(ZK-proof; sid

C

; P

i

;P; (~s; c)), as if coming from F

c

zk

. (Recall that by the aHC scheme, given

the trapdoor information

~

t = (t

1

; : : : ; t

`

), a commitment to 0 with ~s can be opened as either

0 or 1; see Section 4.5.)

The simulation of the prove phase is carried out as follows. Whenever S receives a message

(CP-proof; sid; x) from F

1:M

cp

, it internally passes A the message (ZK-proof; sid

P

; (x;~s; c)),

where c is the list of simulated commitments generated above.

Dealing with the corruption of parties: The only private information held by a receiving party

P

j

is the trapdoor information t

j

that it chooses in the initialization phase. As we have seen in

the simulation of the initialization phase above, S knows all of the trapdoors in the simulated

execution. Therefore, when A corrupts a receiving party P

j

, simulator S internally passes t

j

to A.

The committing party P

i

's private state in an execution of Protocol ACP

1:M

consists of the

list of committed values w and the list of vectors of random strings r (that contain the

decommitment information of the list c). Therefore, when A corrupts the committer P

i

,

simulator S �rst externally corrupts P

i

in the ideal process and obtains the list w. Next, S

generates the list r so that the simulated list of commitments c is \explained" as a list of

commitments to w. S can do this because it has all of the trapdoor information t

1

; : : : ; t

`

(this case is identical to in the proof of Proposition 4.7.2).
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The analysis of the correctness of the simulation is analogous to in the two-party case and is omitted.

4.9.4 Multi-party Secure Computation for Malicious Adversaries

As in the two-party case, multi-party secure computation in the presence of malicious adversaries is

obtained by constructing a protocol compiler that transforms protocols for the semi-honest model

into protocols for the malicious model. This compiler is then applied to Protocol �

F

of Section 4.9.1.

The compiler is constructed in the F

1:M

cp

-hybrid model and in a very similar way to the two-party

compiler. The compiler itself is described in Figure 4.17. We note that each party has to commit

and prove statements to all other parties during the protocol execution. In order to do this, each

party P

i

uses a separate invocation of F

1:M

cp

, with session ID sid

i

. (Also here, the protocol should

make sure that these session ID's are unique as long as the session ID of the current copy of Comp(�)

is unique. This can be done by setting sid

i

= sid � i where sid is the session ID of the current

copy of Comp(�). The relations parameterizing these functionalities are natural extensions of the

relations parameterizing the relations F

1

cp

and F

2

cp

in the two-party compiler of Figure 4.11. The

multi-party compiler here also uses \standard" commitments (rather than UC commitments) for

coin-tossing. In order to remain in the F

1:M

cp

-hybrid model, these commitments are implemented by

F

1:M

cp

where the relation used is the identity relation (and so a proof is just a decommitment). Once

again, the di�erent invocations of F

1:M

cp

are distinguished by unique identi�ers (in the coin-tossing

used for generating P

j

's random tape, P

i

uses F

1:M

cp

with session ID sid

i;j

= sid � i � j). Notice

that protocol Comp(�) essentially broadcasts (via F

1:M

cp

) each message that was sent in �, even if

this message was originally sent only to a single party. This is done to provide all parties with

consistent views of the execution; it clearly has no negative e�ect on the security of the protocol

(since the adversary anyway sees all messages).

Implicit in the above protocol speci�cation is the fact that all parties only consider messages

that are associated with the speci�ed session identi�ers and referring to the same set of parties P.

All other messages are ignored. As in the two-party case, we assume that � is such that the parties

copy their input tape onto an internal work tape when �rst activated.

We now prove that the compiler achieves the desired result:

Proposition 4.9.7 (multi-party protocol compiler): Let � be a multi-party protocol and let Comp(�)

be the protocol obtained by applying the compiler of Figure 4:17 to �. Then, for every malicious

adversary A that interacts with Comp(�) in the F

1:M

cp

-hybrid model there exists a semi-honest

adversary A

0

that interacts with � in the plain real-life model, such that for every environment Z,

real

�;A

0

;Z

� hybrid

F

1:M

cp

Comp(�);A;Z

Proof (sketch): The proof sketch is very similar to the proof of Proposition 4.8.1 for the two-party

case. We construct a semi-honest adversary A

0

from the malicious adversary A. Adversary A

0

runs

the protocol � while internally simulating an execution of Comp(�) for A. The key point in the

simulation is that A

0

is able to complete the simulation in spite of the fact that, being semi-honest,

it cannot diverge from the protocol speci�cation. This is so since A is forced to send all messages

via F

1:M

cp

that veri�es their correctness. Thus, essentially, A must behave in a semi-honest way and

can be simulated by a truly semi-honest party A

0

. (Of course, A is not semi-honest and can send

arbitrary messages. However, since all invalid messages are ignored by F

1:M

cp

in Comp(�), they do

not cause any problem.) A

0

runs a simulated copy of A, and proceeds as follows:
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Comp(�)

Party P

i

proceeds as follows (the code for all other parties is analogous):

1. Random tape generation: When activating Comp(�) for the �rst time with session identi�er sid and

set P or parties, party P

i

proceeds as follows. For every party P

j

, the parties run the following

procedure in order to choose a random tape for P

j

:

(a) P

i

chooses r

j

i

2

R

f0; 1g

k

and sends (commit; sid

i;j

;P; r

j

i

) to F

1:M

cp

.

(b) P

i

receives (receipt; sid

k;j

; P

k

;P) for every P

k

2 P. P

i

also receives (receipt; sid

j

; P

j

;P), where

P

j

is the party for whom the random tape is being chosen. P

i

then uses F

1:M

cp

to decommit

to its value r

j

i

. That is, P

i

sends (CP-prover; sid

i;j

; r

j

i

) to F

1:M

cp

, where the relation parame-

terizing the F

1:M

cp

functionality with identi�er sid

i;j

is the identity relation (i.e., F

1:M

cp

sends

(CP-proof; sid

i;j

; r

j

i

) if r

j

i

was the value previously committed to; it thus serves as a regular

commitment functionality).

(c) P

i

receives (CP-proof; sid

k;j

; r

j

k

) messages for every k 6= j and de�nes the string s

j

=

L

k 6=j

r

j

k

.

(The random tape for P

j

is de�ned by r

j

= r

j

j

� s

j

.)

When choosing a random tape for P

i

, the only di�erence for P

i

is that it sends its random string

r

i

i

to F

1:M

cp

indexed by session-identi�er sid

i

and it does not decommit (as is understood from P

j

's

behavior above).

2. Activation due to new input: When activated with input (sid; x), party P

i

proceeds as follows.

(a) Input commitment: P

i

sends (commit; sid

i

;P; x) to F

1:M

cp

and adds x to the list of inputs x

i

(this

list is initially empty and contains P

i

's inputs from all the previous activations of �). (At this

point all other parties P

j

receive the message (receipt; sid

i

; P

i

;P) from F

1:M

cp

. P

i

then proceeds

to the next step.)

(b) Protocol computation: Let m be the series of �-messages that were broadcast in all the activa-

tions of � until now (m is initially empty). P

i

runs the code of � on its input list x

i

, messages

m, and random tape r

i

(as generated above). If � instructs P

i

to broadcast a message, P

i

proceeds to the next step (Step 2c).

(c) Outgoing message transmission: For each outgoing message m that P

i

sends in �, P

i

sends

(CP-prover; sid

i

; (m; s

i

;m)) to F

1:M

cp

with a relation R

�

de�ned as follows:

R

�

=

�

((m; s

i

;m); (x

i

; r

i

i

)) j m = �(x

i

; r

i

i

� s

i

;m)

	

In other words, P

i

proves that m is the correct next message generated by � when the input

sequence is x

i

, the random tape is r

i

= r

i

i

� s

i

and the series of broadcast �-messages equals

m. (Recall that r

i

i

and all the elements of x

i

were committed to by P

i

in the past using commit

activations of F

1:M

cp

with identi�er sid

i

, and that s

i

is the random-string derived in the random

tape generation for P

i

above.)

3. Activation due to incoming message: Upon receiving a message (CP-proof; sid

j

; (m; s

j

;m)) that is

sent by P

j

, party P

i

�rst veri�es that the following conditions hold (note that F

1:M

cp

with sid

j

is

parameterized by the same relation R

�

as F

1:M

cp

with sid

i

above):

� s

j

is the random string that is derived in the random tape generation for P

j

above.

� m equals the series of �-messages that were broadcast in all the activations until now. (P

i

knows

these messages because all parties see all messages sent.)

If any of these conditions fail, then P

i

ignores the messages. Otherwise, P

i

appends m to m and

proceeds as in Steps 2b and send-step-multi above.

4. Output: Whenever � generates an output value, Comp(�) generates the same output value.

Figure 4.17: The compiled protocol Comp(�)
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Simulating the communication with Z: The input values received by A

0

from Z are written

on A's input tape, and the output values of A are copied to A

0

's own output tape.

Simulating the \random tape generation" phase: When the �rst activation of � takes place,

A

0

simulates the random tape generation phase of Comp(�) for A. We describe A

0

's simula-

tion of the random tape generation for a party P

j

(this simulation is repeated for every j).

We di�erentiate between the case that P

j

is honest and P

j

is corrupted:

1. Party P

j

is not corrupted: A

0

hands A the message (receipt; sid

j

; P

j

;P) from F

1:M

cp

(this

refers to P

j

's commitment). In addition, A

0

simulates all the (receipt; sid

k;j

; P

k

;P) mes-

sages that A

0

expects to receive from F

1:M

cp

. A

0

completes the simulation by passing A

the \decommit" messages (CP-proof; sid

k;j

; r

j

k

) for every uncorrupted party P

k

. A

0

also

obtains (commit; sid

k;j

; r

j

k

) messages from A for the corrupted parties P

k

as well as the

respective decommit messages (CP-prover; sid

k;j

; r

j

k

). A

0

computes s

j

as in the protocol

and records this value.

2. Party P

j

is corrupted: Let r

j

be the random tape of the semi-honest party P

j

in pro-

tocol �. Now, as above, for every uncorrupted party P

k

, adversary A

0

passes A the

(receipt; sid

k;j

; P

k

;P) messages that A expects to receive from F

1:M

cp

. A

0

also obtains

(commit; sid

k;j

; r

j

k

) messages from A (for every corrupt P

k

) and corrupted P

j

's commit-

ment (commit; sid

j

; r

j

j

). Notice that at this point, A is bound to all the r

j

k

values of

the corrupted parties, whereas A

0

is still free to choose the analogous values for the

uncorrupted parties. Therefore, in the \decommitment" part of the phase, A

0

chooses

the uncorrupted parties' values so that

L

`

k=1

r

j

k

= r

j

where r

j

is the random tape of the

external P

j

in �. (Thus, A

0

forces A into using r

j

for the malicious P

j

in Comp(�) as

well.)

Simulating an activation due to a new input: When the �rst message of an activation of �

is sent, A

0

internally simulates for A the appropriate stage in Comp(�). This is done as

follows. Let P

i

be the activated party with a new input. If P

i

is not corrupted, then A

0

internally passes A the message (receipt; sid

i

; P

i

;P) that A expects to receive from F

1:M

cp

. If

P

i

is corrupted, then A

0

receives a message (commit; sid

i

;P; x) from A (who controls P

i

). A

0

adds x to its list x

i

of inputs received from P

i

and passes A the string (receipt; sid

i

i; P

i

;P).

Furthermore, A

0

sets P

i

's input tape to equal x. (Recall that in the semi-honest model, A

0

can modify the input that the environment writes on a corrupted party's input tape.)

Dealing with messages sent by honest parties: If an uncorrupted party P

i

sends a message

m in � to a corrupted party (controlled by A

0

), then A

0

prepares a simulated message of

Comp(�) to give to A. Speci�cally, A

0

passes A the message (CP-proof; sid

i

; (m; s

i

;m)) as

expected from F

1:M

cp

.

Dealing with messages sent by corrupted parties: When A sends a Comp(�)-message from

a corrupted party, A

0

translates this to the appropriate message in �. That is, A

0

obtains

a message (CP-prover; sid

i

; (m; s

0

i

;m)) from A controlling a corrupted party P

i

. A

0

checks

that the series of broadcasted �-messages is indeed m. A

0

also checks that s

0

i

= s

i

, where

s

i

is the value de�ned in the random tape generation phase. Finally, A

0

checks that m =

�(x

i

; s

i

�r

i

i

;m). If yes, then it delivers the message written on semi-honest party P

i

's outgoing

communication tape in �. Otherwise, A

0

does nothing.
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Dealing with corruption of parties: When the simulated A internally corrupts a party P

i

, ad-

versary A

0

externally corrupts P

i

and obtains all of its past inputs, outputs and random tapes

in �. Then, A

0

prepares a simulated internal state of P

i

in Comp(�). The only additional

state that P

i

has in Comp(�) is the random string r

i

i

for the random tape generation phase.

Since the string s

i

is public and �xed, A

0

sets r

i

i

so that r

i

= s

i

� r

i

i

, where r

i

is P

i

's random

tape in �.

We now claim that Z's view of an interaction with A

0

and � is distributed identically to its view of

an interaction with A and Comp(�). This follows from the same observations as in the two-party

case. The key points are as follows. For every corrupted P

i

, the semi-honest adversary A

0

can force

A into using the exact random tape of P

i

in �. Furthermore, any modi�cation of the inputs made

by A can also be carried out by A

0

. We therefore have that if A follows the protocol speci�cation

with respect to these inputs and random tapes, then the semi-honest parties in � will send exactly

the same messages as the malicious parties in Comp(�). The proof is concluded by observing that

A must follow the protocol speci�cation because the F

1:M

cp

functionality enforces this. Thus, A

0

's

checks of correctness in the simulation perfectly simulate the behavior of F

1:M

cp

in a hybrid execution.

Finally, the internal state revealed to A in the case of a corruption is exactly as it expects to see.

This completes the proof.

Conclusions

By combining Propositions 4.9.5 and 4.9.6, and using the universal composition theorem (Theorem

4.3.3), we obtain that F

1:M

cp

can be securely realized in the (F

bc

;F

1:M

mcom

)-hybrid model, assuming

the existence of trapdoor permutations. Then, combining this with Proposition 4.9.7 we obtain

a protocol compiler in the same hybrid model and under the same assumptions. Applying this

compiler to Proposition 4.9.1, we derive universally composable multi-party computation in the

presence of malicious adversaries. That is:

Theorem 4.9.8 Assume that trapdoor permutations exist. Then, for any well-formed multi-party

ideal functionality F , there exists a non-trivial protocol that securely realizes F in the (F

bc

;F

1:M

mcom

)-

hybrid model in the presence of malicious, static adversaries. Furthermore, if two-party augmented

non-committing encryption protocols exist, then for any adaptively well-formed multi-party ideal

functionality F , there exists a non-trivial protocol that securely realizes F in the (F

bc

;F

1:M

mcom

)-

hybrid model in the presence of malicious, adaptive adversaries.

By combining Theorem 4.9.8 and Proposition 4.9.4, and using the universal composition with joint

state theorem (Theorem 4.3.4), we obtain:

Theorem 4.9.9 (Theorem 4.2.3 { restated): Assume that trapdoor permutations exist. Then, for

any well-formed multi-party ideal functionality F , there exists a non-trivial protocol that securely

realizes F in the (F

bc

;F

crs

)-hybrid model in the presence of malicious, static adversaries. Further-

more, if two-party augmented non-committing encryption protocols exist, then for any adaptively

well-formed multi-party ideal functionality F , there exists a non-trivial protocol that securely real-

izes F in the (F

bc

;F

crs

)-hybrid model in the presence of malicious, adaptive adversaries. In both

cases, the protocol uses only a single copy of F

crs

.
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Appendix A

Abstracts of Additional Results

In this appendix we present abstracts of additional work done by the author during graduate studies

at the Weizmann Institute of Science.

A.1 Secure Protocols

Session-Key Generation using Human Passwords Only [50]: In this paper, we present

session-key generation protocols in a model where the legitimate parties share only a human-

memorizable password. The security guarantee holds with respect to probabilistic polynomial-time

adversaries that control the communication channel (between the parties), and may omit, insert

and modify messages at their choice. Loosely speaking, the e�ect of such an adversary that attacks

an execution of our protocol is comparable to an attack in which an adversary is only allowed to

make a constant number of queries of the form \is w the password of Party A". We stress that

the result holds also in case the passwords are selected at random from a small dictionary so that

it is feasible (for the adversary) to scan the entire directory. We note that prior to our result, it

was not clear whether or not such protocols were attainable without the use of random oracles or

additional setup assumptions.

Joint work with Oded Goldreich.

Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation [64]: In

this paper we show that any two-party functionality can be securely computed in a constant number

of rounds, where security is obtained against (polynomial-time) malicious adversaries that may

arbitrarily deviate from the protocol speci�cation. This is in contrast to Yao's constant-round

protocol that ensures security only in the face of semi-honest adversaries, and to its malicious

adversary version that requires a polynomial number of rounds.

In order to obtain our result, we present a constant-round protocol for secure coin-tossing of

polynomially many coins (in parallel). We then show how this protocol can be used in conjunction

with other existing constructions in order to obtain a constant-round protocol for securely comput-

ing any two-party functionality. On the subject of coin-tossing, we also present a constant-round

almost perfect coin-tossing protocol, where by \almost perfect" we mean that the resulting coins

are guaranteed to be statistically close to uniform (and not just pseudorandom).

Privacy Preserving Data Mining [68]: This paper addresses the issue of privacy preserving

data mining. Speci�cally, we consider a scenario in which two parties owning con�dential databases

127
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wish to run a data mining algorithm on the union of their databases, without revealing any unnec-

essary information. Our work is motivated by the need to both protect privileged information and

enable its use for research or other purposes.

The above problem is a speci�c example of secure multi-party computation and as such, can

be solved using known generic protocols. However, data mining algorithms are typically complex

and, furthermore, the input usually consists of massive data sets. The generic protocols in such a

case are of no practical use and therefore more e�cient protocols are required. We focus on the

problem of decision tree learning with the popular ID3 algorithm. Our protocol is considerably

more e�cient than generic solutions and demands both very few rounds of communication and

reasonable bandwidth.

Joint work with Benny Pinkas.

Sequential Composition of Protocols without Simultaneous Termination [67]: The

question of the composition of protocols is an important and heavily researched one. In this

paper we consider the problem of sequential composition of synchronous protocols that do not have

simultaneous termination; i.e., the parties do not necessarily conclude a protocol execution in the

same round. A problem arises becauses such protocols must begin in synchrony; therefore a second

execution cannot follow from the �rst in a straightforward manner. An important example of a

protocol with this property is that of randomized Byzantine Agreement with an expected constant

number of rounds (such as the one due to Feldman and Micali). We note that expected constant-

round Byzantine Agreement cannot have simultaneous termination and thus this (problematic)

property is inherent.

Given that the termination of the parties is not simultaneous, a natural question to consider is

how to synchronize the parties so that such protocols can be sequentially composed. Furthermore,

such a composition should preserve the original running-time of the protocol, i.e. running the

protocol ` times sequentially should take in the order of ` times the running-time of the protocol.

In this paper, we present a method for sequentially composing any protocol in which the players

do not terminate in the same round, while preserving the original round complexity. An important

application of this result is the sequential composition of parallel Byzantine Agreement. Such a

composition can be used by parties connected in a point-to-point network to run protocols designed

for the broadcast model, while maintaining the original round complexity.

Joint work with Anna Lysyanskaya and Tal Rabin.

A.2 Zero-Knowledge

Resettably-Sound Zero-Knowledge and Its Applications [2]: Resettably-sound proofs and

arguments maintain soundness even when the prover can reset the veri�er to use the same ran-

dom coins in repeated executions of the protocol. We show that resettably-sound zero-knowledge

arguments for NP exist if collision-free hash functions exist. In contrast, resettably-sound zero-

knowledge proofs are possible only for languages in P=poly.

We present two applications of resettably-sound zero-knowledge arguments. First, we construct

resettable zero-knowledge arguments of knowledge for NP, using a natural relaxation of the de�ni-

tion of arguments (and proofs) of knowledge. We note that, under the standard de�nition of proof

of knowledge, it is impossible to obtain resettable zero-knowledge arguments of knowledge for lan-

guages outside BPP . Second, we construct a constant-round resettable zero-knowledge argument
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for NP in the public-key model, under the assumption that collision-free hash functions exist. This

improves upon the sub-exponential hardness assumption required by previous constructions.

We emphasize that our results use non-black-box zero-knowledge simulations. Indeed, we show

that some of the results are impossible to achieve using black-box simulations. In particular, only

languages in BPP have resettably-sound arguments that are zero-knowledge with respect to black-

box simulation.

Joint work with Boaz Barak, Oded Goldreich and Sha� Goldwasser.

Strict Polynomial-Time in Simulation and Extraction [3]: The notion of e�cient com-

putation is usually identi�ed in cryptography and complexity with probabilistic polynomial time.

However, until recently, in order to obtain constant-round zero-knowledge proofs and proofs of

knowledge, one had to allow simulators and knowledge-extractors to run in time which is only

polynomial on the average (i.e., expected polynomial time). Whether or not allowing expected

polynomial-time is necessary for obtaining constant-round zero-knowledge proofs and proofs of

knowledge, has been posed as an important open question. This question is interesting not only

for its theoretical rami�cations, but also because expected polynomial time simulation is not closed

under composition. Therefore, in some cases security may not be maintained when a protocol that

utilizes expected polynomial time simulation (or extraction) is used as a part of a larger protocol.

A partial answer to the question of the necessity (or non-necessity) of expected polynomial-time

was provided recently by Barak, who gave the �rst constant-round zero-knowledge argument with

a strict (in contrast to expected) polynomial-time simulator. His was also the �rst protocol that

is not black-box zero-knowledge. That is, the simulator in his protocol makes inherent use of the

description of the code of the veri�er.

In this paper, we completely resolve the question of expected polynomial-time in constant-round

zero-knowledge arguments and arguments of knowledge. First, we show that there exist constant-

round zero-knowledge arguments of knowledge with strict polynomial-time extractors. As in the

simulator of Barak's zero-knowledge protocol, the extractor for our proof of knowledge is not black-

box and makes inherent use of the code of the prover. On the negative side, we show that non-black-

box techniques are essential for both strict polynomial-time simulation and extraction. That is,

we show that no constant-round zero-knowledge argument (or proof) can have a strict polynomial-

time black-box simulator. Similarly, we show that no constant-round zero-knowledge argument of

knowledge can have a strict polynomial-time black-box knowledge extractor. Thus, for constant-

round black-box zero-knowledge arguments (resp., arguments of knowledge), it is imperative that

the simulator (resp., extractor) be allowed to run in expected polynomial-time.

Joint work with Boaz Barak.

A.3 Miscellaneous

A Simpler Construction of CCA2-Secure Public-Key Encryption Under General As-

sumptions [65]: In this paper we present a simpler construction of an encryption scheme that

achieves adaptive chosen ciphertext security (CCA2), assuming the existence of trapdoor permu-

tations. We build on previous works of Sahai and De Santis et al. and construct a scheme that we

believe is the easiest to understand to date. In particular, it is only slightly more involved than

the Naor-Yung encryption scheme that is secure against passive chosen-ciphertext attacks (CCA1).

We stress that the focus of this paper is on simplicity only.
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