
Chapter 1

Introduction

1.1 Cryptography and Modern Cryptography

The Concise Oxford Dictionary (2006) defines cryptography as the art of
writing or solving codes. This definition may be historically accurate, but it
does not capture the essence of modern cryptography. First, it focuses solely
on the problem of secret communication. This is evidenced by the fact that
the definition specifies “codes”, elsewhere defined as “a system of pre-arranged
signals, especially used to ensure secrecy in transmitting messages”. Second,
the definition refers to cryptography as an art form. Indeed, until the 20th
century (and arguably until late in that century), cryptography was an art.
Constructing good codes, or breaking existing ones, relied on creativity and
personal skill. There was very little theory that could be relied upon and
there was not even a well-defined notion of what constitutes a good code.

In the late 20th century, this picture of cryptography radically changed. A
rich theory emerged, enabling the rigorous study of cryptography as a sci-
ence. Furthermore, the field of cryptography now encompasses much more
than secret communication. For example, it deals with the problems of mes-
sage authentication, digital signatures, protocols for exchanging secret keys,
authentication protocols, electronic auctions and elections, digital cash and
more. In fact, modern cryptography can be said to be concerned with prob-
lems that may arise in any distributed computation that may come under
internal or external attack. Without attempting to provide a perfect defi-
nition of modern cryptography, we would say that it is the scientific study
of techniques for securing digital information, transactions, and distributed
computations.

Another very important difference between classical cryptography (say, be-
fore the 1980s) and modern cryptography relates to who uses it. Historically,
the major consumers of cryptography were military and intelligence organi-
zations. Today, however, cryptography is everywhere! Security mechanisms
that rely on cryptography are an integral part of almost any computer sys-
tem. Users (often unknowingly) rely on cryptography every time they access
a secured website. Cryptographic methods are used to enforce access control
in multi-user operating systems, and to prevent thieves from extracting trade
secrets from stolen laptops. Software protection methods employ encryption,
authentication, and other tools to prevent copying. The list goes on and on.

3

4 Introduction to Modern Cryptography

In short, cryptography has gone from an art form that dealt with secret
communication for the military to a science that helps to secure systems for
ordinary people all across the globe. This also means that cryptography is
becoming a more and more central topic within computer science.

The focus of this book is modern cryptography. Yet we will begin our
study by examining the state of cryptography before the changes mentioned
above. Besides allowing us to ease into the material, it will also provide an
understanding of where cryptography has come from so that we can later
appreciate how much it has changed. The study of “classical cryptography”
— replete with ad-hoc constructions of codes, and relatively simple ways to
break them — serves as good motivation for the more rigorous approach that
we will be taking in the rest of the book.1

1.2 The Setting of Private-Key Encryption

As noted above, cryptography was historically concerned with secret com-
munication. Specifically, cryptography was concerned with the construction
of ciphers (now called encryption schemes) for providing secret communica-
tion between two parties sharing some information in advance. The setting in
which the communicating parties share some secret information in advance is
now known as the private-key (or the symmetric-key) setting. Before describ-
ing some historical ciphers, we discuss the private-key setting and encryption
in more general terms.

In the private-key setting, two parties share some secret information called
a key, and use this key when they wish to communicate secretly with each
other. A party sending a message uses the key to encrypt (or “scramble”) the
message before it is sent, and the receiver uses the same key to decrypt (or
“unscramble”) and recover the message upon receipt. The message itself is
called the plaintext, and the “scrambled” information that is actually trans-
mitted from the sender to the receiver is called the ciphertext ; see Figure 1.1.
The shared key serves to distinguish the communicating parties from any
other parties who may be eavesdropping on their communication (assumed to
take place over a public channel).

In this setting, the same key is used to convert the plaintext into a ciphertext
and back. This explains why this setting is also known as the symmetric-key
setting, where the symmetry lies in the fact that both parties hold the same
key which is used for both encryption and decryption. This is in contrast to

1This is our primary intent in presenting this material and, as such, this chapter should
not be taken as a representative historical account. The reader interested in the history of
cryptography should consult the references at the end of this chapter.

Introduction 5

k k

?

m m

encryption decryption

ciphertext

FIGURE 1.1: The basic setting of private-key encryption.

the setting of asymmetric encryption (introduced in Chapter 9), where the
sender and receiver do not share any secrets and different keys are used for
encryption and decryption. The private-key setting is the classic one, as we
will see later in this chapter.

An implicit assumption in any system using private-key encryption is that
the communicating parties have some way of initially sharing a key in a secret
manner. (Note that if one party simply sends the key to the other over the
public channel, an eavesdropper obtains the key too!) In military settings, this
is not a severe problem because communicating parties are able to physically
meet in a secure location in order to agree upon a key. In many modern
settings, however, parties cannot arrange any such physical meeting. As we
will see in Chapter 9, this is a source of great concern and actually limits the
applicability of cryptographic systems that rely solely on private-key methods.
Despite this, there are still many settings where private-key methods suffice
and are in wide use; one example is disk encryption, where the same user (at
different points in time) uses a fixed secret key to both write to and read from
the disk. As we will explore further in Chapter 10, private-key encryption is
also widely used in conjunction with asymmetric methods.

The syntax of encryption. A private-key encryption scheme is comprised
of three algorithms: the first is a procedure for generating keys, the second
a procedure for encrypting, and the third a procedure for decrypting. These
have the following functionality:

1. The key-generation algorithm Gen is a probabilistic algorithm that out-
puts a key k chosen according to some distribution that is determined
by the scheme.

6 Introduction to Modern Cryptography

2. The encryption algorithm Enc takes as input a key k and a plaintext
message m and outputs a ciphertext c. We denote by Enck(m) the
encryption of the plaintext m using the key k.

3. The decryption algorithm Dec takes as input a key k and a ciphertext c
and outputs a plaintext m. We denote the decryption of the ciphertext
c using the key k by Deck(c).

The set of all possible keys output by the key-generation algorithm is called
the key space and is denoted by K. Almost always, Gen simply chooses a key
uniformly at random from the key space (in fact, one can assume without
loss of generality that this is the case). The set of all “legal” messages (i.e.,
those supported by the encryption algorithm) is denoted M and is called the
plaintext (or message) space. Since any ciphertext is obtained by encrypting
some plaintext under some key, the sets K and M together define a set of all
possible ciphertexts denoted by C. An encryption scheme is fully defined by
specifying the three algorithms (Gen, Enc, Dec) and the plaintext space M.

The basic correctness requirement of any encryption scheme is that for every
key k output by Gen and every plaintext message m ∈ M, it holds that

Deck(Enck(m)) = m.

In words, decrypting a ciphertext (using the appropriate key) yields the orig-
inal message that was encrypted.

Recapping our earlier discussion, an encryption scheme would be used by
two parties who wish to communicate as follows. First, Gen is run to obtain
a key k that the parties share. When one party wants to send a plaintext m
to the other, he computes c := Enck(m) and sends the resulting ciphertext c
over the public channel to the other party.2 Upon receiving c, the other party
computes m := Deck(c) to recover the original plaintext.

Keys and Kerckhoffs’ principle. As is clear from the above formulation,
if an eavesdropping adversary knows the algorithm Dec as well as the key k
shared by the two communicating parties, then that adversary will be able to
decrypt all communication between these parties. It is for this reason that
the communicating parties must share the key k secretly, and keep k com-
pletely secret from everyone else. But maybe they should keep the decryption
algorithm Dec a secret, too? For that matter, perhaps all the algorithms
constituting the encryption scheme (i.e., Gen and Enc as well) should be kept
secret? (Note that the plaintext space M is typically assumed to be known,
e.g., it may consist of English-language sentences.)

In the late 19th century, Auguste Kerckhoffs gave his opinion on this matter
in a paper he published outlining important design principles for military

2Throughout the book, we use “:=” to denote the assignment operation. A list of common
notation can be found in the back of the book.

Introduction 7

ciphers. One of the most important of these principles (now known simply as
Kerckhoffs’ principle) is the following:

The cipher method must not be required to be secret, and it must
be able to fall into the hands of the enemy without inconvenience.

In other words, the encryption scheme itself should not be kept secret, and
so only the key should constitute the secret information shared by the com-
municating parties.

Kerckhoffs’ intention was that an encryption scheme should be designed so
as to be secure even if an adversary knows the details of all the component
algorithms of the scheme, as long as the adversary doesn’t know the key
being used. Stated differently, Kerckhoffs’ principle demands that security
rely solely on the secrecy of the key. But why?

There are three primary arguments in favor of Kerckhoffs’ principle. The
first is that it is much easier for the parties to maintain secrecy of a short key
than to maintain secrecy of an algorithm. It is easier to share a short (say,
100-bit) string and store this string securely than it is to share and securely
store a program that is thousands of times larger. Furthermore, details of an
algorithm can be leaked (perhaps by an insider) or learned through reverse
engineering; this is unlikely when the secret information takes the form of a
randomly-generated string.

A second argument in favor of Kerckhoffs’ principle is that in case the key
is exposed, it will be much easier for the honest parties to change the key than
to replace the algorithm being used. Actually, it is good security practice to
refresh a key frequently even when it has not been exposed, and it would be
much more cumbersome to replace the software being used instead.

Finally, in case many pairs of people (say, within a company) need to en-
crypt their communication, it will be significantly easier for all parties to use
the same algorithm/program, but different keys, than for everyone to use a
different program (which would furthermore depend on the party with whom
they are communicating).

Today, Kerckhoffs’ principle is understood as not only advocating that secu-
rity should not rely on secrecy of the algorithms being used, but also demand-
ing that these algorithms be made public. This stands in stark contrast to the
notion of “security by obscurity” which is the idea that improved security can
be achieved by keeping a cryptographic algorithm hidden. Some of the ad-
vantages of “open cryptographic design”, where algorithm specifications are
made public, include the following:

1. Published designs undergo public scrutiny and are therefore likely to
be stronger. Many years of experience have demonstrated that it is
very difficult to construct good cryptographic schemes. Therefore, our
confidence in the security of a scheme is much higher if it has been
extensively studied (by experts other than the designers of the scheme
themselves) and no weaknesses have been found.

8 Introduction to Modern Cryptography

2. It is better for security flaws, if they exist, to be revealed by “ethi-
cal hackers” (leading, hopefully, to the system being fixed) rather than
having these flaws be known only to malicious parties.

3. If the security of the system relies on the secrecy of the algorithm, then
reverse engineering of the code (or leakage by industrial espionage) poses
a serious threat to security. This is in contrast to the secret key which
is not part of the code, and so is not vulnerable to reverse engineering.

4. Public design enables the establishment of standards.

As simple and obvious as it may sound, the principle of open cryptographic
design (i.e., Kerckhoffs’ principle) is ignored over and over again with dis-
astrous results. It is very dangerous to use a proprietary algorithm (i.e., a
non-standardized algorithm that was designed in secret by some company),
and only publicly tried and tested algorithms should be used. Fortunately,
there are enough good algorithms that are standardized and not patented, so
that there is no reason whatsoever today to use something else.

Attack scenarios. We wrap up our general discussion of encryption with a
brief discussion of some basic types of attacks against encryption schemes. In
order of severity, these are:

• Ciphertext-only attack: This is the most basic type of attack and refers to
the scenario where the adversary just observes a ciphertext (or multiple
ciphertexts) and attempts to determine the underlying plaintext (or
plaintexts).

• Known-plaintext attack: Here, the adversary learns one or more pairs
of plaintexts/ciphertexts encrypted under the same key. The aim of
the adversary is then to determine the plaintext that was encrypted in
some other ciphertext (for which it does not know the corresponding
plaintext).

• Chosen-plaintext attack: In this attack, the adversary has the ability to
obtain the encryption of plaintexts of its choice. It then attempts to
determine the plaintext that was encrypted in some other ciphertext.

• Chosen-ciphertext attack: The final type of attack is one where the adver-
sary is even given the capability to obtain the decryption of ciphertexts
of its choice. The adversary’s aim, once again, is to determine the plain-
text that was encrypted in some other ciphertext (whose decryption the
adversary is unable to obtain directly).

The first two types of attacks are passive in that the adversary just receives
some ciphertexts (and possibly some corresponding plaintexts as well) and
then launches its attack. In contrast, the last two types of attacks are active
in that the adversary can adaptively ask for encryptions and/or decryptions
of its choice.

Introduction 9

The first two attacks described above are clearly realistic. A ciphertext-only
attack is the easiest to carry out in practice; the only thing the adversary needs
is to eavesdrop on the public communication line over which encrypted mes-
sages are sent. In a known-plaintext attack it is assumed that the adversary
somehow also obtains the plaintext messages corresponding to the ciphertexts
that it viewed. This is often realistic because not all encrypted messages are
confidential, at least not indefinitely. As a trivial example, two parties may
always encrypt a “hello” message whenever they begin communicating. As
a more complex example, encryption may be used to keep quarterly earn-
ings results secret until their release date. In this case, anyone eavesdropping
and obtaining the ciphertext will later obtain the corresponding plaintext.
Any reasonable encryption scheme must therefore remain secure against an
adversary that can launch a known-plaintext attack.

The two latter active attacks may seem somewhat strange and require jus-
tification. (When do parties encrypt and decrypt whatever an adversary
wishes?) We defer a more detailed discussion of these attacks to the place in
the text where security against these attacks is formally defined: Section 3.5
for chosen-plaintext attacks and Section 3.7 for chosen-ciphertext attacks.

Different applications of encryption may require the encryption scheme to
be resilient to different types of attacks. It is not always the case that an
encryption scheme secure against the “strongest” type of attack should be
used, since it may be less efficient than an encryption scheme secure against
“weaker” attacks. Therefore, the latter may be preferred if it suffices for the
application at hand.

1.3 Historical Ciphers and Their Cryptanalysis

In our study of “classical cryptography” we will examine some historical ci-
phers and show that they are completely insecure. As stated earlier, our main
aims in presenting this material are (1) to highlight the weaknesses of an
“ad-hoc” approach to cryptography, and thus motivate the modern, rigorous
approach that will be discussed in the following section, and (2) to demon-
strate that “simple approaches” to achieving secure encryption are unlikely to
succeed, and show why this is the case. Along the way, we will present some
central principles of cryptography which can be learned from the weaknesses
of these historical schemes.

In this section (and this section only), plaintext characters are written in
lower case and ciphertext characters are written in UPPER CASE. When de-
scribing attacks on schemes, we always apply Kerckhoffs’ principle and assume
that the scheme is known to the adversary (but the key being used is not).

10 Introduction to Modern Cryptography

Caesar’s cipher. One of the oldest recorded ciphers, known as Caesar’s
cipher, is described in “De Vita Caesarum, Divus Iulius” (“The Lives of the
Caesars, The Deified Julius”), written in approximately 110 C.E.:

There are also letters of his to Cicero, as well as to his intimates
on private affairs, and in the latter, if he had anything confidential
to say, he wrote it in cipher, that is, by so changing the order of
the letters of the alphabet, that not a word could be made out. If
anyone wishes to decipher these, and get at their meaning, he must
substitute the fourth letter of the alphabet, namely D, for A, and
so with the others.

That is, Julius Caesar encrypted by rotating the letters of the alphabet by 3
places: a was replaced with D, b with E, and so on. Of course, at the end of
the alphabet, the letters wrap around and so x was replaced with A, y with B,
and z with C. For example, the short message begin the attack now, with
spaces removed, would be encrypted as:

EHJLQWKHDWWDFNQRZ

making it unintelligible.
An immediate problem with this cipher is that the method is fixed. Thus,

anyone learning how Caesar encrypted his messages would be able to decrypt
effortlessly. This can be seen also if one tries to fit Caesar’s cipher into the
syntax of encryption described earlier: the key-generation algorithm Gen is
trivial (that is, it does nothing) and there is no secret key to speak of.

Interestingly, a variant of this cipher called ROT-13 (where the shift is 13
places instead of 3) is widely used nowadays in various online forums. It is
understood that this does not provide any cryptographic security, and ROT-
13 is used merely to ensure that the text (say, a movie spoiler) is unintelligible
unless the reader of a message consciously chooses to decrypt it.

The shift cipher and the sufficient key space principle. Caesar’s cipher
suffers from the fact that encryption is always done in the same way, and there
is no secret key. The shift cipher is similar to Caesar’s cipher, but a secret key
is introduced.3 Specifically, in the shift cipher the key k is a number between 0
and 25. Then, to encrypt, letters are rotated by k places as in Caesar’s cipher.
Mapping this to the syntax of encryption described earlier, this means that
algorithm Gen outputs a random number k in the set {0, . . . , 25}; algorithm
Enc takes a key k and a plaintext written using English letters and shifts
each letter of the plaintext forward k positions (wrapping around from z to
a); and algorithm Dec takes a key k and a ciphertext written using English
letters and shifts every letter of the ciphertext backward k positions (this time
wrapping around from a to z). The plaintext message space M is defined to be

3In some books, “Caesar’s cipher” and “shift cipher” are used interchangeably.

Introduction 11

all finite strings of characters from the English alphabet (note that numbers,
punctuation, or other characters are not allowed in this scheme).

A more mathematical description of this method can be obtained by viewing
the alphabet as the numbers 0, . . . , 25 (rather than as English characters).
First, some notation: if a is an integer and N is an integer greater than 1,
we define [a mod N] as the remainder of a upon division by N . Note that
[a mod N] is an integer between 0 and N − 1, inclusive. We refer to the
process mapping a to [a mod N] as reduction modulo N ; we will have much
more to say about reduction modulo N beginning in Chapter 7.

Using this notation, encryption of a plaintext character mi with the key k
gives the ciphertext character [(mi+k) mod 26], and decryption of a ciphertext
character ci is defined by [(ci−k) mod 26]. In this view, the message space M
is defined to be any finite sequence of integers that lie in the range {0, . . . , 25}.

Is the shift cipher secure? Before reading on, try to decrypt the following
message that was encrypted using the shift cipher and a secret key k (whose
value we will not reveal):

OVDTHUFWVZZPISLRLFZHYLAOLYL.

Is it possible to decrypt this message without knowing k? Actually, it is
completely trivial! The reason is that there are only 26 possible keys. Thus,
it is easy to try every key, and see which key decrypts the ciphertext into
a plaintext that “makes sense”. Such an attack on an encryption scheme is
called a brute-force attack or exhaustive search. Clearly, any secure encryption
scheme must not be vulnerable to such a brute-force attack; otherwise, it
can be completely broken, irrespective of how sophisticated the encryption
algorithm is. This brings us to a trivial, yet important, principle called the
“sufficient key space principle”:

Any secure encryption scheme must have a key space that is not
vulnerable to exhaustive search.4

In today’s age, an exhaustive search may use very powerful computers, or
many thousands of PC’s that are distributed around the world. Thus, the
number of possible keys must be very large (at least 260 or 270).

We emphasize that the above principle gives a necessary condition for se-
curity, not a sufficient one. We will see next an encryption scheme that has
a very large key space but which is still insecure.

Mono-alphabetic substitution. The shift cipher maps each plaintext char-
acter to a different ciphertext character, but the mapping in each case is given
by the same shift (the value of which is determined by the key). The idea

4This is actually only true if the message space is larger than the key space (see Chapter 2
for an example where security is achieved using a small key space as long as the message
space is even smaller). In practice, when very long messages are typically encrypted with
the same key, the key space must not be vulnerable to exhaustive search.

12 Introduction to Modern Cryptography

behind mono-alphabetic substitution is to map each plaintext character to a
different ciphertext character in an arbitrary manner, subject only to the fact
that the mapping must be one-to-one in order to enable decryption. The key
space thus consists of all permutations of the alphabet, meaning that the size
of the key space is 26! = 26 · 25 · 24 · · · 2 · 1 (or approximately 288) if we are
working with the English alphabet. As an example, the key

a b c d e f g h i j k l m n o p q r s t u v w x y z

X E U A D N B K V M R O C Q F S Y H W G L Z I J P T

in which a maps to X, etc., would encrypt the message tellhimaboutme to
GDOOKVCXEFLGCD. A brute force attack on the key space for this cipher takes
much longer than a lifetime, even using the most powerful computer known
today. However, this does not necessarily mean that the cipher is secure. In
fact, as we will show now, it is easy to break this scheme even though it has
a very large key space.

Assume that English-language text is being encrypted (i.e., the text is
grammatically-correct English writing, not just text written using characters
of the English alphabet). It is then possible to attack the mono-alphabetic
substitution cipher by utilizing statistical patterns of the English language (of
course, the same attack works for any language). The two properties of this
cipher that are utilized in the attack are as follows:

1. In this cipher, the mapping of each letter is fixed, and so if e is mapped
to D, then every appearance of e in the plaintext will result in the ap-
pearance of D in the ciphertext.

2. The probability distribution of individual letters in the English language
(or any other) is known. That is, the average frequency counts of the dif-
ferent English letters are quite invariant over different texts. Of course,
the longer the text, the closer the frequency counts will be to the av-
erage. However, even relatively short texts (consisting of only tens of
words) have distributions that are “close enough” to the average.

The attack works by tabulating the probability distribution of the ciphertext
and then comparing it to the known probability distribution of letters in
English text (see Figure 1.2). The probability distribution being tabulated
in the attack is simply the frequency count of each letter in the ciphertext
(i.e., a table saying that A appeared 4 times, B appeared 11 times, and so on).
Then, we make an initial guess of the mapping defined by the key based on the
frequency counts. For example, since e is the most frequent letter in English,
we will guess that the most frequent character in the ciphertext corresponds
to the plaintext character e, and so on. Unless the ciphertext is quite long,
some of the guesses are likely to be wrong. Even for quite short ciphertexts,
however, the guesses will be good enough to enable relatively quick decryption
(especially utilizing other knowledge of the English language, such as the fact

Introduction 13

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

a b c d e f g h i j k l m n o p q r s t u v w x y z

8.2 1.5 2.8 4.2 12.7 2.2 2.0 6.1 7.0 0.1 0.8 4.0 2.4 6.7 7.5 1.9 0.1 6.0 6.3 9.0 2.8 1.0 2.4 2.0 0.1 0.1

Letter

P
er

ce
n
ta
g
e

FIGURE 1.2: Average letter frequencies for English-language text.

that between t and e, the character h is likely to appear, and the fact that u
generally follows q).

Actually, it should not be very surprising that the mono-alphabetic substi-
tution cipher can be quickly broken, since puzzles based on this cipher appear
in newspapers (and are solved by some people before their morning coffee)!
We recommend that you try to decipher the following message — this should
help convince you how easy the attack is to carry out (of course, you should
use Figure 1.2 to help you):

JGRMQOYGHMVBJWRWQFPWHGFFDQGFPFZRKBEEBJIZQQOCIBZKLFAFGQVFZFWWE

OGWOPFGFHWOLPHLRLOLFDMFGQWBLWBWQOLKFWBYLBLYLFSFLJGRMQBOLWJVFP

FWQVHQWFFPQOQVFPQOCFPOGFWFJIGFQVHLHLROQVFGWJVFPFOLFHGQVQVFILE

OGQILHQFQGIQVVOSFAFGBWQVHQWIJVWJVFPFWHGFIWIHZZRQGBABHZQOCGFHX

We conclude that, although the mono-alphabetic cipher has a very large
key space, it is still completely insecure.

An improved attack on the shift cipher. We can use character frequency
tables to give an improved attack on the shift cipher. Specifically, our previous
attack on the shift cipher required us to decrypt the ciphertext using each
possible key, and then check to see which key results in a plaintext that “makes
sense”. A drawback of this approach is that it is difficult to automate, since it
is difficult for a computer to check whether some plaintext “makes sense”. (We
do not claim this is impossible, as it can certainly be done using a dictionary
of valid English words. We only claim that it is not trivial.) Moreover, there
may be cases — we will see one below — where the plaintext characters are

14 Introduction to Modern Cryptography

distributed according to English-language text but the plaintext itself is not
valid English text, making the problem harder.

As before, associate the letters of the English alphabet with the numbers
0, . . . , 25. Let pi, for 0 ≤ i ≤ 25, denote the probability of the ith letter in
normal English text. A simple calculation using known values of pi gives

25∑

i=0

p2
i ≈ 0.065 . (1.1)

Now, say we are given some ciphertext and let qi denote the probability of the
ith letter in this ciphertext (qi is simply the number of occurrences of the ith
letter divided by the length of the ciphertext). If the key is k, then we expect
that qi+k should be roughly equal to pi for every i. (We use i + k instead of
the more cumbersome [i + k mod 26].) Equivalently, if we compute

Ij
def
=

25∑

i=0

pi · qi+j

for each value of j ∈ {0, . . . , 25}, then we expect to find that Ik ≈ 0.065 where
k is the key that is actually being used (whereas Ij for j 6= k is expected to
be different). This leads to a key-recovery attack that is easy to automate:
compute Ij for all j, and then output the value k for which Ik is closest
to 0.065.

The Vigenère (poly-alphabetic shift) cipher. As we have described, the
statistical attack on the mono-alphabetic substitution cipher could be carried
out because the mapping of each letter was fixed. Thus, such an attack can
be thwarted by mapping different instances of the same plaintext character
to different ciphertext characters. This has the effect of “smoothing out”
the probability distribution of characters in the ciphertext. For example,
consider the case that e is sometimes mapped to G, sometimes to P, and
sometimes to Y. Then, the ciphertext letters G, P, and Y will most likely not
stand out as more frequent, because other less-frequent characters will be also
be mapped to them. Thus, counting the character frequencies will not offer
much information about the mapping.

The Vigenère cipher works by applying multiple shift ciphers in sequence.
That is, a short, secret word is chosen as the key, and then the plaintext is
encrypted by “adding” each plaintext character to the next character of the
key (as in the shift cipher), wrapping around in the key when necessary. For
example, an encryption of the message tellhimaboutme using the key cafe

would work as follows:

Plaintext: tellhimaboutme

Key: cafecafecafeca

Ciphertext: WFRQKJSFEPAYPF

Introduction 15

(The key need not be an actual English word.) This is exactly the same as
encrypting the first, fifth, ninth, and so on characters with the shift cipher
and key k = 3, the second, sixth, tenth, and so on characters with key k = 1,
the third, seventh, and so on characters with k = 6 and the fourth, eighth,
and so on characters with k = 5. Thus, it is a repeated shift cipher using
different keys. Notice that in the above example l is mapped once to R and
once to Q. Furthermore, the ciphertext character F is sometimes obtained from
e and sometimes from a. Thus, the character frequencies in the ciphertext
are “smoothed”, as desired.

If the key is a sufficiently-long word (chosen at random), then cracking this
cipher seems to be a daunting task. Indeed, it was considered by many to
be an unbreakable cipher, and although it was invented in the 16th century a
systematic attack on the scheme was only devised hundreds of years later.

Breaking the Vigenère cipher. A first observation in attacking the Vi-
genère cipher is that if the length of the key is known, then the task is relatively
easy. Specifically, say the length of the key is t (this is sometimes called the
period). Then the ciphertext can be divided into t parts where each part can
be viewed as being encrypted using a single instance of the shift cipher. That
is, let k = k1, . . . , kt be the key (each ki is a letter of the alphabet) and let
c1, c2, . . . be the ciphertext characters. Then, for every j (1 ≤ j ≤ t) the set
of characters

cj , cj+t, cj+2t, . . .

were all encrypted by a shift cipher using key kj . All that remains is therefore
to determine, for each j, which of the 26 possible keys is the correct one. This
is not as trivial as in the case of the shift cipher, because by guessing a single
letter of the key it is no longer possible to determine if the decryption “makes
sense”. Furthermore, checking for all values of j simultaneously would require
a brute force search through 26t different possible keys (which is infeasible for
t greater than, say, 15). Nevertheless, we can still use the statistical method
described earlier. That is, for every set of ciphertext characters relating to a
given key (that is, for each value of j), it is possible to tabulate the frequency of
each ciphertext character and then check which of the 26 possible shifts yields
the “right” probability distribution. Since this can be carried out separately
for each key, the attack can be carried out very quickly; all that is required is
to build t frequency tables (one for each of the subsets of the characters) and
compare them to the real probability distribution.

An alternate, somewhat easier approach, is to use the improved method for
attacking the shift cipher that we showed earlier. Recall that this improved
attack does not rely on checking for a plaintext that “makes sense”, but only
relies on the underlying probability distribution of characters in the plaintext.

Either of the above approaches give successful attacks when the key length
is known. It remains to show how to determine the length of the key.

Kasiski’s method, published in the mid-19th century, gives one approach for
solving this problem. The first step is to identify repeated patterns of length 2

16 Introduction to Modern Cryptography

or 3 in the ciphertext. These are likely to be due to certain bigrams or trigrams
that appear very often in the English language. For example, consider the
word “the” that appears very often in English text. Clearly, “the” will be
mapped to different ciphertext characters, depending on its position in the
text. However, if it appears twice in the same relative position, then it will
be mapped to the same ciphertext characters. For example, if it appears in
positions t + j and 2t + i (where i 6= j) then it will be mapped to different
characters each time. However, if it appears in positions t+ j and 2t+ j, then
it will be mapped to the same ciphertext characters. In a long enough text,
there is a good chance that “the” will be mapped repeatedly to the same
ciphertext characters.

Consider the following concrete example with the key beads (spaces have
been added for clarity):

Plaintext: the man and the woman retrieved the letter from the post office

Key: bea dsb ead sbe adsbe adsbeadsb ean sdeads bead sbe adsb eadbea

Ciphertext: VMF QTP FOH MJJ XSFCS SIMTNFZXF YIS EIYUIK HWPQ MJJ QSLV TGJKGF

The word the is mapped sometimes to VMF, sometimes to MJJ and sometimes
to YIS. However, it is mapped twice to MJJ, and in a long enough text it
is likely that it would be mapped multiple times to each of the possibilities.
The main observation of Kasiski is that the distance between such multiple
appearances (except for some coincidental ones) is a multiple of the period
length. (In the above example, the period length is 5 and the distance between
the two appearances of MJJ is 40, which is 8 times the period length.) There-
fore, the greatest common divisor of all the distances between the repeated
sequences should yield the period length t or a multiple thereof.

An alternative approach called the index of coincidence method, is a bit
more algorithmic and hence easier to automate. Recall that if the key-length
is t, then the ciphertext characters

c1, c1+t, c1+2t, . . .

are encrypted using the same shift. This means that the frequencies of the
characters in this sequence are expected to be identical to the character fre-
quencies of standard English text except in some shifted order. In more detail:
let qi denote the frequency of the ith English letter in the sequence above (once
again, this is simply the number of occurrences of the ith letter divided by
the total number of letters in the sequence). If the shift used here is k1 (this
is just the first character of the key), then we expect qi+k1

to be roughly
equal to pi for all i, where pi is again the frequency of the ith letter in stan-
dard English text. But this means that the sequence p0, . . . , p25 is just the
sequence q0, . . . , q25 shifted by k1 places. As a consequence, we expect that
(see Equation (1.1)):

25∑

i=0

q2
i =

25∑

i=0

p2
i ≈ 0.065 .

Introduction 17

This leads to a nice way to determine the key length t. For τ = 1, 2, . . .,
look at the sequence of ciphertext characters c1, c1+τ , c1+2τ , . . . and tabulate
q0, . . . , q25 for this sequence. Then compute

Sτ
def
=

25∑

i=0

q2
i .

When τ = t we expect to see Sτ ≈ 0.065 as discussed above. On the other
hand, for τ 6= t we expect (roughly speaking) that all characters will occur
with roughly equal probability in the sequence c1, c1+τ , c1+2τ , . . ., and so we
expect qi ≈ 1/26 for all i. In this case we will obtain

Sτ ≈

25∑

i=0

1

26
≈ 0.038 ,

which is sufficiently different from 0.065 for this technique to work.

Ciphertext length and cryptanalytic attacks. The above attacks on the
Vigenère cipher require a longer ciphertext than for previous schemes. For
example, a large ciphertext is needed for determining the period if Kasiski’s
method is used. Furthermore, statistics are needed for t different parts of
the ciphertext, and the frequency table of a message converges to the average
as its length grows (and so the ciphertext needs to be approximately t times
longer than in the case of the mono-alphabetic substitution cipher). Simi-
larly, the attack that we showed for the mono-alphabetic substitution cipher
requires a longer ciphertext than for the attacks on the shift cipher (which
can work for messages consisting of just a single word). This phenomenon is
not coincidental, and relates to the size of the key space for each encryption
scheme.

Ciphertext-only vs. known-plaintext attacks. The attacks described
above are all ciphertext-only attacks (recall that this is the easiest type of
attack to carry out in practice). All the above ciphers are trivially broken
if the adversary is able to carry out a known-plaintext attack; we leave a
demonstration of this as an exercise.

Conclusions and discussion. We have presented only a few historical ci-
phers. Beyond their general historical interest, our aim in presenting them was
to illustrate some important lessons regarding cryptographic design. Stated
briefly, these lessons are:

1. Sufficient key space principle: Assuming sufficiently-long messages are
being encrypted, a secure encryption scheme must have a key space
that cannot be searched exhaustively in a reasonable amount of time.
However, a large key space does not by itself imply security (e.g., the
mono-alphabetic substitution cipher has a large key space but is trivial
to break). Thus, a large key space is a necessary requirement, but not
a sufficient one.

18 Introduction to Modern Cryptography

2. Designing secure ciphers is a hard task: The Vigenère cipher remained
unbroken for a long time, partially due to its presumed complexity. Far
more complex schemes have also been used, such as the German Enigma.
Nevertheless, this complexity does not imply security and all historical
ciphers can be completely broken. In general, it is very hard to design
a secure encryption scheme, and such design should be left to experts.

The history of classical encryption schemes is fascinating, both with respect to
the methods used as well as the influence of cryptography and cryptanalysis
on world history (in World War II, for example). Here, we have only tried to
give a taste of some of the more basic methods, with a focus on what modern
cryptography can learn from these attempts.

1.4 The Basic Principles of Modern Cryptography

The previous section has given a taste of historical cryptography. It is fair
to say that, historically, cryptography was more of an art than any sort of
science: schemes were designed in an ad-hoc manner and then evaluated based
on their perceived complexity or cleverness. Unfortunately, as we have seen,
all such schemes (no matter how clever) were eventually broken.

Modern cryptography, now resting on firmer and more scientific founda-
tions, gives hope of breaking out of the endless cycle of constructing schemes
and watching them get broken. In this section we outline the main principles
and paradigms that distinguish modern cryptography from classical cryptog-
raphy. We identify three main principles:

1. Principle 1 — the first step in solving any cryptographic problem is the
formulation of a rigorous and precise definition of security.

2. Principle 2 — when the security of a cryptographic construction relies
on an unproven assumption, this assumption must be precisely stated.
Furthermore, the assumption should be as minimal as possible.

3. Principle 3 — cryptographic constructions should be accompanied by a
rigorous proof of security with respect to a definition formulated accord-
ing to principle 1, and relative to an assumption stated as in principle 2
(if an assumption is needed at all).

We now discuss each of these principles in greater depth.

1.4.1 Principle 1 – Formulation of Exact Definitions

One of the key intellectual contributions of modern cryptography has been
the realization that formal definitions of security are essential prerequisites

Introduction 19

for the design, usage, or study of any cryptographic primitive or protocol. Let
us explain each of these in turn:

1. Importance for design: Say we are interested in constructing a secure
encryption scheme. If we do not have a firm understanding of what it
is we want to achieve, how can we possibly know whether (or when)
we have achieved it? Having an exact definition in mind enables us to
better direct our design efforts, as well as to evaluate the quality of what
we build, thereby improving the end construction. In particular, it is
much better to define what is needed first and then begin the design
phase, rather than to come up with a post facto definition of what has
been achieved once the design is complete. The latter approach risks
having the design phase end when the designers’ patience is tried (rather
than when the goal has been met), or may result in a construction that
achieves more than is needed and is thus less efficient than a better
solution.

2. Importance for usage: Say we want to use an encryption scheme within
some larger system. How do we know which encryption scheme to use? If
presented with a candidate encryption scheme, how can we tell whether
it suffices for our application? Having a precise definition of the security
achieved by a given scheme (coupled with a security proof relative to a
formally-stated assumption as discussed in principles 2 and 3) allows us
to answer these questions. Specifically, we can define the security that
we desire in our system (see point 1, above), and then verify whether
the definition satisfied by a given encryption scheme suffices for our
purposes. Alternatively, we can specify the definition that we need the
encryption scheme to satisfy, and look for an encryption scheme satis-
fying this definition. Note that it may not be wise to choose the “most
secure” scheme, since a weaker notion of security may suffice for our
application and we may then be able to use a more efficient scheme.

3. Importance for study: Given two encryption schemes, how can we com-
pare them? Without any definition of security, the only point of com-
parison is efficiency, but efficiency alone is a poor criterion since a highly
efficient scheme that is completely insecure is of no use. Precise specifi-
cation of the level of security achieved by a scheme offers another point
of comparison. If two schemes are equally efficient but the first one
satisfies a stronger definition of security than the second, then the first
is preferable.5 There may also be a trade-off between security and effi-
ciency (see the previous two points), but at least with precise definitions
we can understand what this trade-off entails.

5Of course, things are rarely this simple.

20 Introduction to Modern Cryptography

Of course, precise definitions also enable rigorous proofs (as we will discuss
when we come to principle 3), but the above reasons stand irrespective of this.

It is a mistake to think that formal definitions are not needed since “we
have an intuitive idea of what security means”. For starters, different people
have different intuition regarding what is considered secure. Even one person
might have multiple intuitive ideas of what security means, depending on the
context. For example, in Chapter 3 we will study four different definitions
of security for private-key encryption, each of which is useful in a different
scenario. In any case, a formal definition is necessary for communicating your
“intuitive idea” to someone else.

An example: secure encryption. It is also a mistake to think that formal-
izing definitions is trivial. For example, how would you formalize the desired
notion of security for private-key encryption? (The reader may want to pause
to think about this before reading on.) We have asked students many times
how secure encryption should be defined, and have received the following an-
swers (often in the following order):

1. Answer 1 — an encryption scheme is secure if no adversary can find
the secret key when given a ciphertext. Such a definition of encryption
completely misses the point. The aim of encryption is to protect the
message being encrypted and the secret key is just the means of achiev-
ing this. To take this to an absurd level, consider an encryption scheme
that ignores the secret key and just outputs the plaintext. Clearly, no
adversary can find the secret key. However, it is also clear that no
secrecy whatsoever is provided.6

2. Answer 2 — an encryption scheme is secure if no adversary can find
the plaintext that corresponds to the ciphertext. This definition already
looks better and can even be found in some texts on cryptography.
However, after some more thought, it is also far from satisfactory. For
example, an encryption scheme that reveals 90% of the plaintext would
still be considered secure under this definition, as long as it is hard
to find the remaining 10%. But this is clearly unacceptable in most
common applications of encryption. For example, employment contracts
are mostly standard text, and only the salary might need to be kept
secret; if the salary is in the 90% of the plaintext that is revealed then
nothing is gained by encrypting.

If you find the above counterexample silly, refer again to footnote 6.
The point once again is that if the definition as stated isn’t what was
meant, then a scheme could be proven secure without actually providing
the necessary level of protection. (This is a good example of why exact
definitions are important.)

6And lest you respond: “But that’s not what I meant!”, well, that’s exactly the point: it is
often not so trivial to formalize what one means.

Introduction 21

3. Answer 3 — an encryption scheme is secure if no adversary can deter-
mine any character of the plaintext that corresponds to the ciphertext.
This already looks like an excellent definition. However, other subtleties
can arise. Going back to the example of the employment contract, it may
be impossible to determine the actual salary or even any digit thereof.
However, should the encryption scheme be considered secure if it leaks
whether the encrypted salary is greater than or less than $100,000 per
year? Clearly not. This leads us to the next suggestion.

4. Answer 4 — an encryption scheme is secure if no adversary can de-
rive any meaningful information about the plaintext from the ciphertext.
This is already close to the actual definition. However, it is lacking
in one respect: it does not define what it means for information to be
“meaningful”. Different information may be meaningful in different ap-
plications. This leads to a very important principle regarding definitions
of security for cryptographic primitives: definitions of security should
suffice for all potential applications. This is essential because one can
never know what applications may arise in the future. Furthermore, im-
plementations typically become part of general cryptographic libraries
which are then used in may different contexts and for many different
applications. Security should ideally be guaranteed for all possible uses.

5. The final answer — an encryption scheme is secure if no adversary can
compute any function of the plaintext from the ciphertext. This provides
a very strong guarantee and, when formulated properly, is considered
today to be the “right” definition of security for encryption. Even here,
there are questions regarding the attack model that should be consid-
ered, and how this aspect of security should be defined.

Even though we have now hit upon the correct requirement for secure encryp-
tion, conceptually speaking, it remains to state this requirement mathemat-
ically and formally, and this is in itself a non-trivial task (one that we will
address in detail in Chapters 2 and 3).

As noted in the “final answer”, above, our formal definition must also spec-
ify the attack model: i.e., whether we assume a ciphertext-only attack or a
chosen-plaintext attack. This illustrates a general principle used when formu-
lating cryptographic definitions. Specifically, in order to fully define security
of some cryptographic task, there are two distinct issues that must be ex-
plicitly addressed. The first is what is considered to be a break, and the
second is what is assumed regarding the power of the adversary. The break
is exactly what we have discussed above; i.e., an encryption scheme is con-
sidered broken if an adversary learns some function of the plaintext from a
ciphertext. The power of the adversary relates to assumptions regarding the
actions the adversary is assumed to be able to take, as well as the adversary’s
computational power. The former refers to considerations such as whether
the adversary is assumed only to be able to eavesdrop on encrypted messages

22 Introduction to Modern Cryptography

(i.e., a ciphertext-only attack), or whether we assume that the adversary can
also actively request encryptions of any plaintext that it likes (i.e., carry out
a chosen-plaintext attack). A second issue that must be considered is the
computational power of the adversary. For all of this book, except Chapter 2,
we will want to ensure security against any efficient adversary, by which we
mean any adversary running in polynomial time. (A full discussion of this
point appears in Section 3.1.2. For now, it suffices to say that an “efficient”
strategy is one that can be carried out in a lifetime. Thus “feasible” is ar-
guably a more accurate term.) When translating this into concrete terms, we
might require security against any adversary utilizing decades of computing
time on a supercomputer.

In summary, any definition of security will take the following general form:

A cryptographic scheme for a given task is secure if no adversary
of a specified power can achieve a specified break.

We stress that the definition never assumes anything about the adversary’s
strategy. This is an important distinction: we are willing to assume something
about the adversary’s capabilities (e.g., that it is able to mount a chosen-
plaintext attack but not a chosen-ciphertext attack), but we are not willing
to assume anything about how it uses its abilities. We call this the “arbitrary
adversary principle”: security must be guaranteed for any adversary within
the class of adversaries having the specified power. This principle is impor-
tant because it is impossible to foresee what strategies might be used in an
adversarial attack (and history has proven that attempts to do so are doomed
to failure).

Mathematics and the real world. A definition of security essentially pro-
vides a mathematical formulation of a real-world problem. If the mathemati-
cal definition does not appropriately model the real world, then the definition
may be useless. For example, if the adversarial power under consideration
is too weak (and, in practice, adversaries have more power), or the break is
such that it allows real attacks that were not foreseen (like one of the early
answers regarding encryption), then “real security” is not obtained, even if
a “mathematically-secure” construction is used. In short, a definition of se-
curity must accurately model the real world in order for it to deliver on its
mathematical promise of security.

It is quite common, in fact, for a widely-accepted definition to be ill-suited
for some new application. As one notable example, there are encryption
schemes that were proven secure (relative to some definition like the ones we
have discussed above) and then implemented on smart-cards. Due to physical
properties of the smart-cards, it was possible for an adversary to monitor
the power usage of the smart-card (e.g., how this power usage fluctuated
over time) as the encryption scheme was being run, and it turned out that
this information could be used to determine the key. There was nothing
wrong with the security definition or the proof that the scheme satisfied this

Introduction 23

definition; the problem was simply that there was a mismatch between the
definition and the real-world implementation of the scheme on a smart-card.

This should not be taken to mean that definitions (or proofs, for that mat-
ter) are useless! The definition — and the scheme that satisfies it — may still
be appropriate for other settings, such as when encryption is performed on
an end-host whose power usage cannot be monitored by an adversary. Fur-
thermore, one way to achieve secure encryption on a smart-card would be to
further refine the definition so that it takes power analysis into account. Or,
perhaps hardware countermeasures for power analysis can be developed, with
the effect of making the original definition (and hence the original scheme)
appropriate for smart-cards. The point is that with a definition you at least
know where you stand, even if the definition turns out not to accurately model
the particular setting in which a scheme is used. In contrast, with no definition
it is not even clear what went wrong.

This possibility of a disconnect between a mathematical model and the
reality it is supposed to be modeling is not unique to cryptography but is
something that occurs throughout science. To take an example from the field
of computer science, consider the meaning of a mathematical proof that there
exist well-defined problems that computers cannot solve.7 The immediate
question that arises is what does it mean for “a computer to solve a problem”?
Specifically, a mathematical proof can be provided only when there is some
mathematical definition of what a computer is (or to be more exact, what the
process of computation is). The problem is that computation is a real-world
process, and there are many different ways of computing. In order for us to be
really convinced that the “unsolvable problem” is really unsolvable, we must
be convinced that our mathematical definition of computation captures the
real-world process of computation. How do we know when it does?

This inherent difficulty was noted by Alan Turing who studied questions of
what can and cannot be solved by a computer. We quote from his original
paper [140] (the text in square brackets replaces original text in order to make
it more reader friendly):

No attempt has yet been made to show [that the problems we have
defined to be solvable by a computer] include [exactly those prob-
lems] which would naturally be regarded as computable. All argu-
ments which can be given are bound to be, fundamentally, appeals
to intuition, and for this reason rather unsatisfactory mathemati-
cally. The real question at issue is “What are the possible processes
which can be carried out in [computation]?”

The arguments which I shall use are of three kinds.

(a) A direct appeal to intuition.

7Those who have taken a course in computability theory will be familiar with the fact that
such problems do indeed exist (e.g., the Halting Problem).

24 Introduction to Modern Cryptography

(b) A proof of the equivalence of two definitions (in case the new
definition has a greater intuitive appeal).

(c) Giving examples of large classes of [problems that can be
solved using a given definition of computation].

In some sense, Turing faced the exact same problem as cryptographers. He
developed a mathematical model of computation but needed to somehow be
convinced that the model was a good one. Likewise, cryptographers define
notions of security and need to be convinced that their definitions imply mean-
ingful security guarantees in the real world. As with Turing, they may employ
the following tools to become convinced:

1. Appeals to intuition: the first tool when contemplating a new definition
of security is to see whether it implies security properties that we in-
tuitively expect to hold. This is a minimum requirement, since (as we
have seen in our discussion of encryption) our initial intuition usually
results in a notion of security that is too weak.

2. Proofs of equivalence: it is often the case that a new definition of secu-
rity is justified by showing that it is equivalent to (or stronger than) a
definition that is older, more familiar, or more intuitively-appealing.

3. Examples: a useful way of being convinced that a definition of security
suffices is to show that the different real-world attacks we are familiar
with are ruled out by the definition.

In addition to all of the above, and perhaps most importantly, we rely on the
test of time and the fact that with time, the scrutiny and investigation of both
researchers and practitioners testifies to the soundness of a definition.

1.4.2 Principle 2 – Reliance on Precise Assumptions

Most modern cryptographic constructions cannot be proven secure uncon-
ditionally. Indeed, proofs of this sort would require resolving questions in the
theory of computational complexity that seem far from being answered today.
The result of this unfortunate state of affairs is that security typically relies
upon some assumption. The second principle of modern cryptography states
that assumptions must be precisely stated. This is for three main reasons:

1. Validation of the assumption: By their very nature, assumptions are
statements that are not proven but are rather conjectured to be true.
In order to strengthen our belief in some assumption, it is necessary for
the assumption to be studied. The more the assumption is examined
and tested without being successfully refuted, the more confident we are
that the assumption is true. Furthermore, study of an assumption can
provide positive evidence of its validity by showing that it is implied by
some other assumption that is also widely believed.

Introduction 25

If the assumption being relied upon is not precisely stated and presented,
it cannot be studied and (potentially) refuted. Thus, a pre-condition to
raising our confidence in an assumption is having a precise statement of
what exactly is assumed.

2. Comparison of schemes: Often in cryptography, we may be presented
with two schemes that can both be proven to satisfy some definition but
each with respect to a different assumption. Assuming both schemes are
equally efficient, which scheme should be preferred? If the assumption
on which one scheme is based is weaker than the assumption on which
the second scheme is based (i.e., the second assumption implies the
first), then the first scheme is to be preferred since it may turn out
that the second assumption is false while the first assumption is true.
If the assumptions used by the two schemes are incomparable, then
the general rule is to prefer the scheme that is based on the better-
studied assumption, or the assumption that is simpler (for the reasons
highlighted in the previous paragraphs).

3. Facilitation of proofs of security: As we have stated, and will discuss
in more depth in principle 3, modern cryptographic constructions are
presented together with proofs of security. If the security of the scheme
cannot be proven unconditionally and must rely on some assumption,
then a mathematical proof that “the construction is secure if the as-
sumption is true” can only be provided if there is a precise statement of
what the assumption is.

One observation is that it is always possible to just assume that a construc-
tion itself is secure. If security is well defined, this is also a precise assumption
(and the proof of security for the construction is trivial)! Of course, this is
not accepted practice in cryptography for a number of reasons. First of all, as
noted above, an assumption that has been tested over the years is preferable
to a new assumption that is introduced just to prove a given construction
secure. Second, there is a general preference for assumptions that are simpler
to state, since such assumptions are easier to study and to refute. So, for
example, an assumption of the type that some mathematical problem is hard
to solve is simpler to study and work with than an assumption that an encryp-
tion schemes satisfies a complex (and possibly unnatural) security definition.
When a simple assumption is studied at length and still no refutation is found,
we have greater confidence in its being correct. Another advantage of relying
on “lower-level” assumptions (rather than just assuming a construction is se-
cure) is that these low-level assumptions can typically be shared amongst a
number of constructions. If a specific instantiation of the assumption turns
out to be false, it can simply be replaced (within any higher-level construction
based on that assumption) by a different instantiation of that assumption.

The above methodology is used throughout this book. For example, Chap-
ters 3 and 4 show how to achieve secure communication (in a number of ways),

26 Introduction to Modern Cryptography

assuming that a primitive called a “pseudorandom function” exists. In these
chapters nothing is said at all about how such a primitive can be constructed.
In Chapter 5, we then discuss how pseudorandom functions are constructed
in practice, and in Chapter 6 we show that pseudorandom functions can be
constructed from even lower-level primitives.

1.4.3 Principle 3 – Rigorous Proofs of Security

The first two principles discussed above lead naturally to the current one.
Modern cryptography stresses the importance of rigorous proofs of security
for proposed schemes. The fact that exact definitions and precise assumptions
are used means that such a proof of security is possible. However, why is a
proof necessary? The main reason is that the security of a construction or
protocol cannot be checked in the same way that software is typically checked.
For example, the fact that encryption and decryption “work” and that the
ciphertext looks garbled, does not mean that a sophisticated adversary is
unable to break the scheme. Without a proof that no adversary of the specified
power can break the scheme, we are left only with our intuition that this is
the case. Experience has shown that intuition in cryptography and computer
security is disastrous. There are countless examples of unproven schemes
that were broken, sometimes immediately and sometimes years after being
presented or deployed.

Another reason why proofs of security are so important is related to the
potential damage that can result if an insecure system is used. Although soft-
ware bugs can sometimes be very costly, the potential damage that may result
from someone breaking the encryption scheme or authentication mechanism
of a bank is huge. Finally, we note that although many bugs exist in software,
things basically work due to the fact that typical users do not try to make
their software fail. In contrast, attackers use amazingly complex and intri-
cate means (utilizing specific properties of the construction) to attack security
mechanisms with the clear aim of breaking them. Thus, although proofs of
correctness are always desirable in computer science, they are absolutely es-
sential in the realm of cryptography and computer security. We stress that the
above observations are not just hypothetical, but are conclusions that have
been reached after years of empirical evidence and experience.

The reductionist approach. We conclude by noting that most proofs in
modern cryptography use what may be called the reductionist approach. Given
a theorem of the form

“Given that Assumption X is true, Construction Y is secure ac-
cording to the given definition”,

a proof typically shows how to reduce the problem given by Assumption X
to the problem of breaking Construction Y. More to the point, the proof
will typically show (via a constructive argument) how any adversary breaking

Introduction 27

Construction Y can be used as a sub-routine to violate Assumption X. We
will have more to say about this in Section 3.1.3.

Summary – Rigorous vs. Ad-Hoc Approaches to Security

The combination of the above three principles constitutes a rigorous ap-
proach to cryptography that is distinct from the ad-hoc approach of classical
cryptography. The ad-hoc approach may fail on any one of the above three
principles, but often ignores them all. Unfortunately, ad hoc solutions are still
designed and deployed by those who wish to obtain a “quick and dirty” solu-
tion to a problem (or by those who are just simply unaware). We hope that
this book will contribute to an awareness of the importance of the rigorous
approach, and its success in developing new, mathematically-secure schemes.

References and Additional Reading

In this chapter, we have studied just a few of the known historical ciphers.
There are many others of both historical and mathematical interest, and we
refer the reader to textbooks by Stinson [138] or Trappe and Washington [139]
for further details. The role of these schemes in history (and specifically in
the history of war) is a fascinating subject that is covered in the book by
Kahn [81].

We discussed the differences between the historical, non-rigorous approach
to cryptography (as exemplified by historical ciphers) and a rigorous approach
based on precise definitions and proofs. Shannon [127] was the first to take
the latter approach. Modern cryptography, which relies on (computational)
assumptions in addition to definitions and proofs, was begun in the seminal
paper by Goldwasser and Micali [69]. We will study this in Chapter 3.

Exercises

1.1 Decrypt the ciphertext provided at the end of the section on mono-
alphabetic substitution.

1.2 Provide a formal definition of the Gen, Enc, and Dec algorithms for both
the mono-alphabetic substitution and Vigenère ciphers.

28 Introduction to Modern Cryptography

1.3 Consider an improved version of the Vigenère cipher, where instead
of using multiple shift ciphers, multiple mono-alphabetic substitution
ciphers are used. That is, the key consists of t random permutations of
the alphabet, and the plaintext characters in positions i, t+ i, 2t+ i, and
so on are encrypted using the ith permutation. Show how to break this
version of the cipher.

1.4 In an attempt to prevent Kasiski’s attack on the Vigenère cipher, the
following modification has been proposed. Given the period t of the
cipher, the plaintext is broken up into blocks of size t. Recall that within
each block, the Vigenère cipher works by encrypting the ith character
with the ith key (using a shift cipher). Letting the key be k1, . . . , kt, this
means the ith character in each block is encrypted by adding ki to it,
modulo 26. The proposed modification is to encrypt the ith character
in the jth block by adding ki + j modulo 26.

(a) Show that decryption can be carried out.

(b) Describe the effect of the above modification on Kasiski’s attack.

(c) Devise an alternate way to determine the period for this scheme.

1.5 Show that the shift, substitution, and Vigenère ciphers are all trivial
to break using a known-plaintext attack. How much known plaintext is
needed to completely recover the key for each of the ciphers?

1.6 Show that the shift, substitution, and Vigenère ciphers are all trivial
to break using a chosen-plaintext attack. How much plaintext must
be encrypted in order for the adversary to completely recover the key?
Compare to the previous question.

