
Techniques for Efficient Secure
Computation Based on Yao’s Protocol

Yehuda Lindell
Bar-Ilan University, Israel

PKC 2013

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 1 / 39



Secure Computation – Background

A set of parties P1, . . . , Pm with private inputs x1, . . . , xm wish to
compute a joint function f of their inputs while preserving secure
properties such as:

I Privacy: nothing but the output f(x1, . . . , xm) is revealed
I Correctness: the correct output is obtained
I Independence of inputs: no party can choose its input as a

function of another party’s input

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 2 / 39



Secure Computation – Background

In an election:

I Privacy means that individual votes are not revealed

I Correctness means that the candidate with the majority vote
wins

I Independence of inputs means that you can’t vote as a
function of the outcome

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 3 / 39



Secure Computation – Background

Security must hold in the presence of adversarial behavior:
I Semi-honest: follows the protocol description but attempts to

learn more than allowed
I Models inadvertent leakage but otherwise gives a weak

guarantee

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 4 / 39



Secure Computation – Background

Security must hold in the presence of adversarial behavior:
I Malicious: follows any arbitrary attack strategy

I Provides a very strong guarantee, but is hard to achieve with
respect to efficiency

Security is formalized by comparing the output of a secure protocol to an ideal

world where an incorruptible trusted party computes the function for the parties

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 5 / 39



Secure Computation – Feasibility

Despite its stringent requirements, it was shown that essentially
any function can be securely computed:

I In the presence of semi-honest adversaries [Yao86,GMW87]

I In the presence of malicious adversaries [GMW87]

I With perfect security where a 2/3 honest majority is
guaranteed [BGW88]

Since the 1980s, the feasibility of secure computation has been
studied heavily:

I Assumptions

I Stronger adversaries (e.g., adaptive corruptions)

I Composition

I And much much more...

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 6 / 39



Secure Computation – Theory or Practice?

I Due to its broad applicability, secure computation has been a
foundational theoretical topic of study since the mid 1980s

I A rich and beautiful theory has been developed

I Recently, interest has grown with respect to the practicality
of secure computation

I Governments, security organizations, industry,...

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 7 / 39



Secure Computation in Practice?

In the last 5 years there has been incredible progress on making
secure computation practical

I Today we can run semi-honest secure computation for
problems like secure AES in tens of milliseconds

I We can run huge computations (on circuits of over a billion
gates) in minutes

I We have protocols for malicious adversaries that give amazing
amortized complexity

I Every year there are new significant breakthroughs

This is very surprising (and exciting): we now know that secure
computation can be practical for a reasonably wide range of
problems

I Ten years ago, no one dreamed that this would be possible

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 8 / 39



Efficient Secure Computation – Semi-Honest Adversaries
From 2004 to 2013

I Yao’s protocol from 1986 has a constant number of rounds
and uses a few symmetric encryptions per gate

I For many years, it was assumed that any protocol that is based
on a circuit for computing the function cannot be practical

I In 2004, the first implementation of a general secure
computation protocol was carried out

I Fairplay – an implementation of Yao’s protocol for semi-honest
adversaries

I It was surprising to many that a circuit-based protocol could
even run

I The billionaires’ problem on 32-bit integers took between 1.25
seconds (LAN) and 4.01 seconds (WAN)

I Median on ten 16-bit numbers (circuit of size 4383 gates) took
between 7.09 and 16.63 seconds

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 9 / 39



Efficient Secure Computation – Semi-Honest Adversaries
From 2004 to 2013

I In 2011, an implementation of Yao for semi-honest adversaries
was carried out, using the state-of-the-art algorithmic
improvements, and systems optimizations

I Secure AES computation (with 9,280 non-XOR gates) took
just 0.2 seconds overall (after an additional 0.6 seconds of
preprocessing that can be used for many executions)

I In 2013, we can do even better

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 10 / 39



Secure Computation – Malicious Adversaries
From 2004 to 2013

I In 2004, there were no efficient protocols whatsoever (the
only way to achieve this level of security was via general
zero-knowledge proofs for NP)

I There were protocols that need exponentiations per gate; e.g.,
[SchoenmakersTuyls2004]

I These protocols can be efficient for small circuits but do not
scale well

I In 2013, we have a number of efficient protocols
[NO09,IPS09,DO10,LOP11,BDOZ11,NNOS12,DPSZ12]

I One important and influential approach is based on Yao’s
garbled circuits [Y86,LP07,LP11,sS11]

I This approach appears to still give the lowest latency in a
model with no preprocessing

I In 2012, an implementation of secure AES computation took
< 30 seconds on 4-cores, and about 8 seconds on 16-cores

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 11 / 39



Secure Computation in Practice
Secure AES Computation

The problem of authentication and one-time passwords:
I Users have devices that compute a PRF of the current time

etc. to generate one-time passwords
I The cryptographic keys for one-time password generation are

stored at a server

I A server breach means that all devices must be replaced (very
costly and problematic, and so is avoided)

I The danger can be mitigated using secure computation
I Share the key between two servers
I In order to verify a one-time password, securely compute AES

(without revealing anything about the key), and then verify

I The same method can be used to verify “bank transaction
signing”

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 12 / 39



Secure Computation in Practice
Secure AES Computation

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 13 / 39



General versus Specific Protocols

I A general protocol can be used to compute any functionality
(based on the circuit or some other general representation)

I For many years it was assumed that general protocols cannot
compete with specific protocols

I In some cases, this may be true, but in many cases general
protocols are the best we know

I And they are good!
I Efficient general protocols have more applicability, and they

save us having to guess what people want to compute
I For years we talked about elections and auctions, but it appears

that one-time password computation is of much more interest

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 14 / 39



This Talk
Efficient Secure Computation Based on Yao’s Protocol

I We will briefly review Yao’s basic protocol

I We briefly mention the major techniques for improving
efficiency in the semi-honest settings

I We will focus on how to deal with malicious adversaries
I Understanding the problem and difficulty
I The cut-and-choose technique and subtleties
I An optimization to reduce bandwidth
I New developments

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 15 / 39



Yao’s Garbled Circuits

A garbling of a circuit C is an “encryption” of the circuit with the
following properties

I Two secret keys are associated with each input wire; one for
the 0-bit and one for the 1-bit

I Given a single key for each input wire, it is possible to
compute the associated output and nothing else. That is:

I Given the keys associated with bits x1, . . . , xn ∈ {0, 1}, it is
possible to compute f(x1, . . . , xn)

I Given the keys associated with x1, . . . , xn ∈ {0, 1} it is not
possible to learn anything beyond f(x1, . . . , xn)

I How can garbled circuits be constructed?

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 16 / 39



A Garbled Gate
Input wires i and j, and output wire `

x y x ∧ y

0 0 0
0 1 0
1 0 0
1 1 1

A plain AND gate

x y x ∧ y

k0i k0j k0`
k0i k1j k0`
k1i k0j k0`
k1i k1j k1`

The associated keys

(garbled values)

Ciphertexts

Ek0i

(
Ek0j

(
k0`
))

Ek0i

(
Ek1j

(
k0`
))

Ek1i

(
Ek0j

(
k0`
))

Ek1i

(
Ek1j

(
k1`
))

The garbled gate

(in random order)

I Given kαi and kβj for some α, β ∈ {0, 1}, can obtain kα∧β`

I But, nothing is revealed by this since all keys are random!

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 17 / 39



A Garbled Circuit
Input wires d, a, b, e and output wires f, g

I Garbled gates can be combined together naturally
I Given one key for every input wire, can compute the entire

circuit without learning anything but the output
Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 18 / 39



Garbled Circuits

Correct computation:

I How does the circuit evaluator know which decryption is
correct?

I Can include redundancy, but then the evaluator has to try all
4 (on average 2.5)

I Choose random “selector bits” that point to the correct
ciphertext (these are random so reveal nothing about the
association between the key and the bit)

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 19 / 39



Yao’s Protocol
The Construction

A protocol for securely computing f(x, y):

I Inputs: P1 has x, and P2 has y

I Party P1 constructs a garbled circuit computing the function
f and sends it to party P2

I Party P1 sends the keys associated with its input x to P2

I P1 and P2 run 1-out-of-2 oblivious transfer for every bit of
P2’s input

I In the ith OT, P2 inputs yi (its ith input bit) and P1 inputs
the pair of keys k0i , k

1
i associated with this input wire

I P2 receives kyi

i and learns nothing about kyi

i

I Given one key for every input wire, P2 computes the garbled
circuit, obtains the output f(x, y), and sends it to P1

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 20 / 39



Yao’s Protocol
Security for Semi-Honest Adversaries

P1 corrupted:

I P1 learns nothing in the OTs and only sees f(x, y)

I This view is easy to simulate given the input and output

P2 corrupted:
I P2 learns a single key only for every input wire

I This is trivial for P1’s input wires
I This follows from the security of OT for P2’s input wires

I From the above, P2 learns nothing but the output from the
garbled circuit

I This view is simulated by constructing a garbled circuit that
just outputs the prescribed output

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 21 / 39



Optimizations for Yao’s Circuits
A Brief Look

I Double-encryption optimizations [LPS08,BHR12]: garbled
gate naively costs 8 encryptions to generate and 2 to evaluate;
this can be reduced to a half (at the expense of assumptions)

I Free XOR gates [KS08]: it is possible to choose the garbled
values so that XOR gates can be computed by just XORing
the input wires

I Garbled row reduction [PSSW09]: reduce the number of
ciphertexts to transmit from 4 to 3 (save bandwidth; a real
bottleneck)

I Circuit optimizations: make circuits smaller, and with more
XOR gates and less AND gates (a new engineering problem)

I Oblivious transfer extensions [IKNP03]: compute 128 real
OTs once, and derive many OTs from hash calls only

I Pipelined execution [HEKM11]: Split the circuit into parts
and have the parties compute in parallel

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 22 / 39



Yao’s Protocols with Malicious Adversaries
The Problems

I The OT must be secure for malicious adversaries
I This was a problem 5 years ago: the best protocols required
O(n) exponentiations

I In 2008, this was solved by [PVW] (stand-alone model version
in [HL10]): the cost is 11m+ 15 regular DDH exponentiations
for m transfers

I The circuit may not be correctly constructed
I This is not just a problem of correctness, but also of privacy
I The circuit can compute a different function of the evaluator’s

input, revealing something that should remain secret

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 23 / 39



Ensuring Correctness of the Circuit

The cut-and-choose paradigm:

I P1 constructs many copies of the circuit

I P2 challenges P1 on half of them

I P1 opens the requested half and P2 checks that are correct

I The parties evaluate the remaining circuits and take output

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 24 / 39



Cut-and-Choose on Yao’s Protocol
Opening a Pandora’s Box

We solve a problem but generate many new ones:

I The parties compute many circuits: we need to force them to
use the same inputs in all

I Opening a circuit means providing all keys on input wires: it
may be possible to construct a circuit with two sets of keys –
one opening it to the correct circuit and one to a different
circuit

I The circuits may be correct, but the garbled keys may not be:
P1 can give invalid 0-keys for the first bit of P2’s input

I If the first bit of P2’s input is 0, then it cannot compute and
so must abort

I If the first bit of P2’s input is 1, then it computes
I Thus, P1 can learn the first bit of P2’s input by observing if it

aborts or not
I This is called a selective bit attack [KS06]

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 25 / 39



Cut-and-Choose on Yao’s Protocol
Another Problem

What should P2 do if not all computed circuits give the
same output?

I Observe that a few circuits may be incorrect with good
probability!

I If P2 aborts, then P1 can carry out the following attack:
I P1 generates one garbled circuit that outputs garbage if the

first bit of P2’s input is 0; otherwise it computes f
I With probability 1/2, this circuit is not checked
I If the first bit of P2’s input is 0, it aborts
I If the first bit of P2’s input is 1, it does not abort
I Thus, P1 can learn the first bit of P2’s input by observing if it

aborts or not

I Thus, P2 cannot abort, even though it knows that P1 is trying
to cheat!

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 26 / 39



Strategy for Determining Output

Party P2 cannot abort, and so takes the majority output

I This is sound since the probability that a majority of the
unopened circuits are incorrect is negligible (in the number of
circuits)

I But, what is the function bounding the probability of
cheating?

I This is important since it determines the number of circuits,
which has a huge ramification on efficiency

I An inaccurate computation:
I Let s be the number of circuits
I The adversary succeeds if s

4 circuits are incorrect and none of
them are chosen to be checked

I Assume each circuit is checked w.p. 1/2, this occurs with
probability 2−s/4

I For security of 2−40 need 160 circuits

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 27 / 39



Bounding the Cheating Probability

I In [LP07] a non-tight bound of 2−s/17 overall was proven
I We didn’t fully appreciate the ramification of this at the time

I In [LP11] this was improved to 2−0.311s and so 128 circuits
suffice

I In [sS11] it was shown that by checking 60% of the circuits,
this can be further improved to 2−0.32s and so 125 circuits
suffice

I In [sS11], they show that this is optimal and thus
cut-and-choose for Yao is stuck at 125 times the cost of
semi-honest Yao

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 28 / 39



Dealing with Malicious Adversaries

Solving the Other Problems

I P2’s input consistency in all circuits: this is easily solved
within regular oblivious transfer

I P1’s input consistency in all circuits: many different
solutions (commitment sets, pseudorandom synthesizer and
Diffie-Hellman proof, auxiliary circuits, and more)

I A circuit with a valid and invalid opening: commit to all
the keys when sending the circuit (commitment may be
implicit as well)

I Selective bit attack: randomize the inputs [LP07], or
incorporate the input keys for P1 into the checks [LP11]

Solving these problems more efficiently is a very active area
of research

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 29 / 39



The Problem of Bandwidth
An Optimization

I For a circuit of 50,000 gates, 125 copies of the circuits
requires sending about 400 MB (and in practice even more)

I In many cases, this will be the bottleneck (especially over the
Internet)

I An optimization proposed by [GMS08]:
I P1 chooses a random ri for the ith garbling and generates the

garbled circuit using randomness PRG(ri)
I P1 sends P2 a collision-resistant hash of the garbled circuits
I To open the ith circuit, P1 sends the seed ri only (and P2

checks the hash)
I To evaluate the ith circuit, P1 sends the garbled circuit (and
P2 checks the hash)

I This saves half of the communication (or even 60% using
[sS11])

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 30 / 39



Malicious Security via Yao’s Garbled Circuits
Where do we go from here?

I It is still possible to optimize the methods used to enforce
input consistency and so on, but the bottleneck of 125 circuits
cannot be broken

I This means that unless massive parallelism is used, the cost of
malicious security is going to be high

I It seems that we have to abandon Yao to go further

I But, the proof of optimality of [sS11] assumes that the
protocol works by opening and checking some percentage and
taking the majority output from the evaluated circuits

I Can a variant of cut-and-choose be used to reduce the
number of circuits?

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 31 / 39



Cut-and-Choose Yao with Fewer Circuits [L13]

I Recall the problem: if P2 aborts when receiving inconsistent
outputs, this can leak information to P1

I We want to design a strategy so that P1 can only cheat by
making all of the checked circuits correct and all of the
evaluated circuits incorrect

I If we succeed, then the cheating probability is just
(

s
s
2

)−1
I To get 2−40 security, 44 circuits suffice

I To further improve this, we can have P2 choose each circuit
to check/evaluate independently at random w.p. 1

2
I This gives an error of 2−40 with just 40 circuits!

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 32 / 39



Dealing with Inconsistent Outputs

The aim: make cheating possible only if all evaluated circuits
are incorrect

I Observation: the problem occurs only if P2 receives different
outputs

I If not all the circuits evaluate, but the ones that do yield the
same output then there is no problem

I This holds because unless all evaluated circuits are incorrect,
at least one is correct and so the output is correct

I The idea: if P2 receives different outputs, then it will learn
P1’s input x

I In this case, P2 can locally compute f(x, y) and obtain correct
output

I We stress that P1 cannot know if P2 learned f(x, y) because
all circuits had the same output or because it learned x

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 33 / 39



Dealing with Inconsistent Outputs
Continued

Implementing the idea:

I The ith output wire must have the same garbled values in all
circuits (checked by P2 in check circuits)

I P2 first evaluates all the evaluation circuits
I P1 and P2 run a new malicious-secure computation for a small

circuit, as follows:
I P1 inputs the same x as in the main computation
I P2 inputs either garbage or two garbled values on a single wire
I If P2’s input is two garbled values, then P2 learns x

I Following this, P1 opens the check circuits and P2 checks

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 34 / 39



The New Secure Computation for a Small Circuit

I The secure computation used is one of the previous protocols,
like [LP11]

I The circuit can be made very small, using a specific design
(see the paper)

I To be concrete: 2m+ `− 1 non-XOR gates, where m is the
output length and ` is the input length

I The proof that P1 uses the same x as before is just a regular
input consistency check that is applied anyway to the main
secure computation

I The checks don’t have any problem going across different
circuits

I We proved our protocol using the method of [LP11] but
believe that others will work

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 35 / 39



Conclusions – Malicious Yao with Fewer Circuits

I We can now achieve malicious security with much fewer
circuits

I For error 2−40 it suffices to send 40 circuits
I Together with existing optimizations and techniques, this gives

us very fast security for malicious adversaries

I The big question:
I What else can be improved and optimized?
I I conjecture that we are not finished with Yao yet!

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 36 / 39



The MPC Lounge
For More Information

The MPC Lounge has just been opened:

I The aim of the lounge is to be a resource on efficient secure
computation

I The lounge has a Wiki, a blog, and pointers to resources

I It is rather empty right now, but we hope that within the next
few months it will fill out

I Go to mpclounge.org

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 37 / 39



Summary

I Efficient secure computation is a reality: there is interest and
we have fast protocols

I I strongly believe that we will start seeing secure computation
in use in the near future

I Yao’s garbled circuits can yield very fast protocols, but there
is still more to do

I We have considered only one approach in this talk (garbled
circuits):

I There are a number of very important other approaches
[NO09,IPS09,DO10,LOP11,BDOZ11,NNOS12,DPSZ12]

I Follow this exciting field and join us: the pace is fast
and the competition is growing, but we are doing things
that we never believed possible just a few years ago!

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 38 / 39



Thank You

Thank You!

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 39 / 39




