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Secure Computation – Background

A set of parties P1, . . . , Pm with private inputs x1, . . . , xm wish to
compute a joint function f of their inputs while preserving secure
properties such as:

I Privacy: nothing but the output f(x1, . . . , xm) is revealed
I Correctness: the correct output is obtained
I Independence of inputs: no party can choose its input as a

function of another party’s input
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Secure Computation – Background

In an election:

I Privacy means that individual votes are not revealed

I Correctness means that the candidate with the majority vote
wins

I Independence of inputs means that you can’t vote as a
function of the outcome
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Secure Computation – Background

Security must hold in the presence of adversarial behavior:
I Semi-honest: follows the protocol description but attempts to

learn more than allowed
I Models inadvertent leakage but otherwise gives a weak

guarantee
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Secure Computation – Background

Security must hold in the presence of adversarial behavior:
I Malicious: follows any arbitrary attack strategy

I Provides a very strong guarantee, but is hard to achieve with
respect to efficiency

Security is formalized by comparing the output of a secure protocol to an ideal

world where an incorruptible trusted party computes the function for the parties
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Secure Computation – Feasibility

Despite its stringent requirements, it was shown that essentially
any function can be securely computed:

I In the presence of semi-honest adversaries [Yao86,GMW87]

I In the presence of malicious adversaries [GMW87]

I With perfect security where a 2/3 honest majority is
guaranteed [BGW88]

Since the 1980s, the feasibility of secure computation has been
studied heavily:

I Assumptions

I Stronger adversaries (e.g., adaptive corruptions)

I Composition

I And much much more...
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Secure Computation – Theory or Practice?

I Due to its broad applicability, secure computation has been a
foundational theoretical topic of study since the mid 1980s

I A rich and beautiful theory has been developed

I Recently, interest has grown with respect to the practicality
of secure computation

I Governments, security organizations, industry,...
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Secure Computation in Practice?

In the last 5 years there has been incredible progress on making
secure computation practical

I Today we can run semi-honest secure computation for
problems like secure AES in tens of milliseconds

I We can run huge computations (on circuits of over a billion
gates) in minutes

I We have protocols for malicious adversaries that give amazing
amortized complexity

I Every year there are new significant breakthroughs

This is very surprising (and exciting): we now know that secure
computation can be practical for a reasonably wide range of
problems

I Ten years ago, no one dreamed that this would be possible
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Efficient Secure Computation – Semi-Honest Adversaries
From 2004 to 2013

I Yao’s protocol from 1986 has a constant number of rounds
and uses a few symmetric encryptions per gate

I For many years, it was assumed that any protocol that is based
on a circuit for computing the function cannot be practical

I In 2004, the first implementation of a general secure
computation protocol was carried out

I Fairplay – an implementation of Yao’s protocol for semi-honest
adversaries

I It was surprising to many that a circuit-based protocol could
even run

I The billionaires’ problem on 32-bit integers took between 1.25
seconds (LAN) and 4.01 seconds (WAN)

I Median on ten 16-bit numbers (circuit of size 4383 gates) took
between 7.09 and 16.63 seconds
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Efficient Secure Computation – Semi-Honest Adversaries
From 2004 to 2013

I In 2011, an implementation of Yao for semi-honest adversaries
was carried out, using the state-of-the-art algorithmic
improvements, and systems optimizations

I Secure AES computation (with 9,280 non-XOR gates) took
just 0.2 seconds overall (after an additional 0.6 seconds of
preprocessing that can be used for many executions)

I In 2013, we can do even better
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Secure Computation – Malicious Adversaries
From 2004 to 2013

I In 2004, there were no efficient protocols whatsoever (the
only way to achieve this level of security was via general
zero-knowledge proofs for NP)

I There were protocols that need exponentiations per gate; e.g.,
[SchoenmakersTuyls2004]

I These protocols can be efficient for small circuits but do not
scale well

I In 2013, we have a number of efficient protocols
[NO09,IPS09,DO10,LOP11,BDOZ11,NNOS12,DPSZ12]

I One important and influential approach is based on Yao’s
garbled circuits [Y86,LP07,LP11,sS11]

I This approach appears to still give the lowest latency in a
model with no preprocessing

I In 2012, an implementation of secure AES computation took
< 30 seconds on 4-cores, and about 8 seconds on 16-cores
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Secure Computation in Practice
Secure AES Computation

The problem of authentication and one-time passwords:
I Users have devices that compute a PRF of the current time

etc. to generate one-time passwords
I The cryptographic keys for one-time password generation are

stored at a server

I A server breach means that all devices must be replaced (very
costly and problematic, and so is avoided)

I The danger can be mitigated using secure computation
I Share the key between two servers
I In order to verify a one-time password, securely compute AES

(without revealing anything about the key), and then verify

I The same method can be used to verify “bank transaction
signing”
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Secure Computation in Practice
Secure AES Computation
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General versus Specific Protocols

I A general protocol can be used to compute any functionality
(based on the circuit or some other general representation)

I For many years it was assumed that general protocols cannot
compete with specific protocols

I In some cases, this may be true, but in many cases general
protocols are the best we know

I And they are good!
I Efficient general protocols have more applicability, and they

save us having to guess what people want to compute
I For years we talked about elections and auctions, but it appears

that one-time password computation is of much more interest
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This Talk
Efficient Secure Computation Based on Yao’s Protocol

I We will briefly review Yao’s basic protocol

I We briefly mention the major techniques for improving
efficiency in the semi-honest settings

I We will focus on how to deal with malicious adversaries
I Understanding the problem and difficulty
I The cut-and-choose technique and subtleties
I An optimization to reduce bandwidth
I New developments
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Yao’s Garbled Circuits

A garbling of a circuit C is an “encryption” of the circuit with the
following properties

I Two secret keys are associated with each input wire; one for
the 0-bit and one for the 1-bit

I Given a single key for each input wire, it is possible to
compute the associated output and nothing else. That is:

I Given the keys associated with bits x1, . . . , xn ∈ {0, 1}, it is
possible to compute f(x1, . . . , xn)

I Given the keys associated with x1, . . . , xn ∈ {0, 1} it is not
possible to learn anything beyond f(x1, . . . , xn)

I How can garbled circuits be constructed?
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A Garbled Gate
Input wires i and j, and output wire `

x y x ∧ y

0 0 0
0 1 0
1 0 0
1 1 1

A plain AND gate

x y x ∧ y

k0i k0j k0`
k0i k1j k0`
k1i k0j k0`
k1i k1j k1`

The associated keys

(garbled values)

Ciphertexts

Ek0i

(
Ek0j

(
k0`
))

Ek0i

(
Ek1j

(
k0`
))

Ek1i

(
Ek0j

(
k0`
))

Ek1i

(
Ek1j

(
k1`
))

The garbled gate

(in random order)

I Given kαi and kβj for some α, β ∈ {0, 1}, can obtain kα∧β`

I But, nothing is revealed by this since all keys are random!
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A Garbled Circuit
Input wires d, a, b, e and output wires f, g

I Garbled gates can be combined together naturally
I Given one key for every input wire, can compute the entire

circuit without learning anything but the output
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Garbled Circuits

Correct computation:

I How does the circuit evaluator know which decryption is
correct?

I Can include redundancy, but then the evaluator has to try all
4 (on average 2.5)

I Choose random “selector bits” that point to the correct
ciphertext (these are random so reveal nothing about the
association between the key and the bit)
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Yao’s Protocol
The Construction

A protocol for securely computing f(x, y):

I Inputs: P1 has x, and P2 has y

I Party P1 constructs a garbled circuit computing the function
f and sends it to party P2

I Party P1 sends the keys associated with its input x to P2

I P1 and P2 run 1-out-of-2 oblivious transfer for every bit of
P2’s input

I In the ith OT, P2 inputs yi (its ith input bit) and P1 inputs
the pair of keys k0i , k

1
i associated with this input wire

I P2 receives kyi

i and learns nothing about kyi

i

I Given one key for every input wire, P2 computes the garbled
circuit, obtains the output f(x, y), and sends it to P1
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Yao’s Protocol
Security for Semi-Honest Adversaries

P1 corrupted:

I P1 learns nothing in the OTs and only sees f(x, y)

I This view is easy to simulate given the input and output

P2 corrupted:
I P2 learns a single key only for every input wire

I This is trivial for P1’s input wires
I This follows from the security of OT for P2’s input wires

I From the above, P2 learns nothing but the output from the
garbled circuit

I This view is simulated by constructing a garbled circuit that
just outputs the prescribed output
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Optimizations for Yao’s Circuits
A Brief Look

I Double-encryption optimizations [LPS08,BHR12]: garbled
gate naively costs 8 encryptions to generate and 2 to evaluate;
this can be reduced to a half (at the expense of assumptions)

I Free XOR gates [KS08]: it is possible to choose the garbled
values so that XOR gates can be computed by just XORing
the input wires

I Garbled row reduction [PSSW09]: reduce the number of
ciphertexts to transmit from 4 to 3 (save bandwidth; a real
bottleneck)

I Circuit optimizations: make circuits smaller, and with more
XOR gates and less AND gates (a new engineering problem)

I Oblivious transfer extensions [IKNP03]: compute 128 real
OTs once, and derive many OTs from hash calls only

I Pipelined execution [HEKM11]: Split the circuit into parts
and have the parties compute in parallel

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 22 / 39



Yao’s Protocols with Malicious Adversaries
The Problems

I The OT must be secure for malicious adversaries
I This was a problem 5 years ago: the best protocols required
O(n) exponentiations

I In 2008, this was solved by [PVW] (stand-alone model version
in [HL10]): the cost is 11m+ 15 regular DDH exponentiations
for m transfers

I The circuit may not be correctly constructed
I This is not just a problem of correctness, but also of privacy
I The circuit can compute a different function of the evaluator’s

input, revealing something that should remain secret
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Ensuring Correctness of the Circuit

The cut-and-choose paradigm:

I P1 constructs many copies of the circuit

I P2 challenges P1 on half of them

I P1 opens the requested half and P2 checks that are correct

I The parties evaluate the remaining circuits and take output
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Cut-and-Choose on Yao’s Protocol
Opening a Pandora’s Box

We solve a problem but generate many new ones:

I The parties compute many circuits: we need to force them to
use the same inputs in all

I Opening a circuit means providing all keys on input wires: it
may be possible to construct a circuit with two sets of keys –
one opening it to the correct circuit and one to a different
circuit

I The circuits may be correct, but the garbled keys may not be:
P1 can give invalid 0-keys for the first bit of P2’s input

I If the first bit of P2’s input is 0, then it cannot compute and
so must abort

I If the first bit of P2’s input is 1, then it computes
I Thus, P1 can learn the first bit of P2’s input by observing if it

aborts or not
I This is called a selective bit attack [KS06]
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Cut-and-Choose on Yao’s Protocol
Another Problem

What should P2 do if not all computed circuits give the
same output?

I Observe that a few circuits may be incorrect with good
probability!

I If P2 aborts, then P1 can carry out the following attack:
I P1 generates one garbled circuit that outputs garbage if the

first bit of P2’s input is 0; otherwise it computes f
I With probability 1/2, this circuit is not checked
I If the first bit of P2’s input is 0, it aborts
I If the first bit of P2’s input is 1, it does not abort
I Thus, P1 can learn the first bit of P2’s input by observing if it

aborts or not

I Thus, P2 cannot abort, even though it knows that P1 is trying
to cheat!
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Strategy for Determining Output

Party P2 cannot abort, and so takes the majority output

I This is sound since the probability that a majority of the
unopened circuits are incorrect is negligible (in the number of
circuits)

I But, what is the function bounding the probability of
cheating?

I This is important since it determines the number of circuits,
which has a huge ramification on efficiency

I An inaccurate computation:
I Let s be the number of circuits
I The adversary succeeds if s

4 circuits are incorrect and none of
them are chosen to be checked

I Assume each circuit is checked w.p. 1/2, this occurs with
probability 2−s/4

I For security of 2−40 need 160 circuits
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Bounding the Cheating Probability

I In [LP07] a non-tight bound of 2−s/17 overall was proven
I We didn’t fully appreciate the ramification of this at the time

I In [LP11] this was improved to 2−0.311s and so 128 circuits
suffice

I In [sS11] it was shown that by checking 60% of the circuits,
this can be further improved to 2−0.32s and so 125 circuits
suffice

I In [sS11], they show that this is optimal and thus
cut-and-choose for Yao is stuck at 125 times the cost of
semi-honest Yao
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Dealing with Malicious Adversaries

Solving the Other Problems

I P2’s input consistency in all circuits: this is easily solved
within regular oblivious transfer

I P1’s input consistency in all circuits: many different
solutions (commitment sets, pseudorandom synthesizer and
Diffie-Hellman proof, auxiliary circuits, and more)

I A circuit with a valid and invalid opening: commit to all
the keys when sending the circuit (commitment may be
implicit as well)

I Selective bit attack: randomize the inputs [LP07], or
incorporate the input keys for P1 into the checks [LP11]

Solving these problems more efficiently is a very active area
of research
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The Problem of Bandwidth
An Optimization

I For a circuit of 50,000 gates, 125 copies of the circuits
requires sending about 400 MB (and in practice even more)

I In many cases, this will be the bottleneck (especially over the
Internet)

I An optimization proposed by [GMS08]:
I P1 chooses a random ri for the ith garbling and generates the

garbled circuit using randomness PRG(ri)
I P1 sends P2 a collision-resistant hash of the garbled circuits
I To open the ith circuit, P1 sends the seed ri only (and P2

checks the hash)
I To evaluate the ith circuit, P1 sends the garbled circuit (and
P2 checks the hash)

I This saves half of the communication (or even 60% using
[sS11])
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Malicious Security via Yao’s Garbled Circuits
Where do we go from here?

I It is still possible to optimize the methods used to enforce
input consistency and so on, but the bottleneck of 125 circuits
cannot be broken

I This means that unless massive parallelism is used, the cost of
malicious security is going to be high

I It seems that we have to abandon Yao to go further

I But, the proof of optimality of [sS11] assumes that the
protocol works by opening and checking some percentage and
taking the majority output from the evaluated circuits

I Can a variant of cut-and-choose be used to reduce the
number of circuits?
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Cut-and-Choose Yao with Fewer Circuits [L13]

I Recall the problem: if P2 aborts when receiving inconsistent
outputs, this can leak information to P1

I We want to design a strategy so that P1 can only cheat by
making all of the checked circuits correct and all of the
evaluated circuits incorrect

I If we succeed, then the cheating probability is just
(

s
s
2

)−1
I To get 2−40 security, 44 circuits suffice

I To further improve this, we can have P2 choose each circuit
to check/evaluate independently at random w.p. 1

2
I This gives an error of 2−40 with just 40 circuits!
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Dealing with Inconsistent Outputs

The aim: make cheating possible only if all evaluated circuits
are incorrect

I Observation: the problem occurs only if P2 receives different
outputs

I If not all the circuits evaluate, but the ones that do yield the
same output then there is no problem

I This holds because unless all evaluated circuits are incorrect,
at least one is correct and so the output is correct

I The idea: if P2 receives different outputs, then it will learn
P1’s input x

I In this case, P2 can locally compute f(x, y) and obtain correct
output

I We stress that P1 cannot know if P2 learned f(x, y) because
all circuits had the same output or because it learned x
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Dealing with Inconsistent Outputs
Continued

Implementing the idea:

I The ith output wire must have the same garbled values in all
circuits (checked by P2 in check circuits)

I P2 first evaluates all the evaluation circuits
I P1 and P2 run a new malicious-secure computation for a small

circuit, as follows:
I P1 inputs the same x as in the main computation
I P2 inputs either garbage or two garbled values on a single wire
I If P2’s input is two garbled values, then P2 learns x

I Following this, P1 opens the check circuits and P2 checks

Yehuda Lindell Techniques for Efficient Secure Computation 28/2/2013 34 / 39



The New Secure Computation for a Small Circuit

I The secure computation used is one of the previous protocols,
like [LP11]

I The circuit can be made very small, using a specific design
(see the paper)

I To be concrete: 2m+ `− 1 non-XOR gates, where m is the
output length and ` is the input length

I The proof that P1 uses the same x as before is just a regular
input consistency check that is applied anyway to the main
secure computation

I The checks don’t have any problem going across different
circuits

I We proved our protocol using the method of [LP11] but
believe that others will work
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Conclusions – Malicious Yao with Fewer Circuits

I We can now achieve malicious security with much fewer
circuits

I For error 2−40 it suffices to send 40 circuits
I Together with existing optimizations and techniques, this gives

us very fast security for malicious adversaries

I The big question:
I What else can be improved and optimized?
I I conjecture that we are not finished with Yao yet!
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The MPC Lounge
For More Information

The MPC Lounge has just been opened:

I The aim of the lounge is to be a resource on efficient secure
computation

I The lounge has a Wiki, a blog, and pointers to resources

I It is rather empty right now, but we hope that within the next
few months it will fill out

I Go to mpclounge.org
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Summary

I Efficient secure computation is a reality: there is interest and
we have fast protocols

I I strongly believe that we will start seeing secure computation
in use in the near future

I Yao’s garbled circuits can yield very fast protocols, but there
is still more to do

I We have considered only one approach in this talk (garbled
circuits):

I There are a number of very important other approaches
[NO09,IPS09,DO10,LOP11,BDOZ11,NNOS12,DPSZ12]

I Follow this exciting field and join us: the pace is fast
and the competition is growing, but we are doing things
that we never believed possible just a few years ago!
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Thank You

Thank You!
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