
Protool Initialization for the Framework of Universal

Composability

Boaz Barak

�

Yehuda Lindell

y

Tal Rabin

y

January 8, 2004

Abstrat

Universally omposable protools (Canetti, FOCS 2000) are ryptographi protools that

remain seure even when run onurrently with arbitrary other protools. Thus, universally

omposable protools an be run in modern networks, like the Internet, and their seurity

is guaranteed. However, the de�nition of universal omposition atually assumes that eah

exeution of the protool is assigned a unique session identi�er, and furthermore, that this

identi�er is known to all the partiipating parties. In addition, all universally omposable

protools assume that the set of partiipating parties and the spei�ation of the protool to

be run are a-priori agreed upon and known to all parties. In a deentralized network like the

Internet, this setup information must be seurely generated by the parties themselves. In this

note we formalize the setup problem and show how to seurely realize it with a simple and

highly eÆient protool.

Key words: Universal omposition, seure multiparty omputation

1 Introdution

The framework of universal omposability (UC) [1℄ is a powerful tool aiding in the design and

analysis of ryptographi protools. The entral feature of this framework is a robust omposition

theorem that states the following: Any protool that is proven seure (as stand-alone) under the

de�nition of universal omposability, is guaranteed to remain seure when run onurrently with

arbitrary other protools. Thus, for example, universally omposable protools an be safely used in

real settings like the Internet, where many sets of parties run many di�erent protools onurrently.

In order to formalize the notion of seurity under onurrent omposition, the framework of

universal omposability assumes that for every protool exeution there is a unique session identi-

�er that is known (and agreed upon) by all parties. In addition, all known universally omposable

protools assume that all parties know (and agree upon) the set of partiipating parties and the

protool to be exeuted. We stress that the above assumptions are not merely tehniality; rather

they are heavily relied on by known onstrution in order to ahieve seurity. (For example, the

ommitment protool of [2℄, that forms the basis for their entire onstrution, binds the session

identi�er to the ommitted value, in order to prevent the opying of ommitments from one ex-

eution to another.) Sine the atual seurity of universally omposable protools relies on the

�

Institute for Advaned Study, Prineton NJ, USA. email: boaz�ias.edu. This work was arried out while visiting

the IBM T.J.Watson Researh Center.

y

IBM T.J.Watson Researh, 19 Skyline Drive, Hawthorne, NY 10532, USA. email: lindell�us.ibm.om,

talr�watson.ibm.om.

1

\orretness" of the setup information (e.g., that the session identi�er is indeed unique and om-

mon to all partiipants), a seure setup protool must be used. In partiular, it does not suÆe

to allow one party (say, the party initiating the protool exeution) to hoose the session identi�er

and distribute it to all the partiipants.

Our results. Before desribing how the problem of obtaining the required setup an be solved,

we must �rst onsider how protools are invoked in a deentralized network. Spei�ally, how

do parties deide to start running a spei� protool, and with whom? Typially, there exists a

protool initiator who \invites" a set of parties to partiipate in some exeution. If the protool

is an aution, then the initiator is most likely to be the autioneer. Then, parties who reeive

this \invitation" may partiipate if they wish. (Prior to the beginning of the protool exeution,

parties may approah the initiator and express interest in partiipating. However, the �nal deision

is in the initiator's hands.) In this note, we provide a formal de�nition of the \initialization and

setup problem"; i.e., the problem of seurely obtaining the protool setup assumptions of the UC

framework, in a setting where any party an initiate protool exeutions. We then present a very

eÆient and simple protool that solves this problem without any entral or trusted authorities,

and without any assumed threshold regarding the number of orrupted parties.

Our protool guarantees that globally unique session identi�ers are used in eah exeution. That

is, the adversary is unable to ause two (or more) di�erent protool exeutions to have the same

session identi�er. At �rst glane, this may seem to ontradit the impossibility results of [4℄. In

[4℄, it is proven that in the setting of parallel or onurrent (stateless) omposition, it is impossible

to ahieve authentiated Byzantine agreement when at least a third of the parties are orrupted.

In addition, they prove that authentiated Byzantine agreement under onurrent omposition an

be ahieved if unique identi�ers are somehow initially obtained. Combining these two results, it

follows that in the setting of authentiated Byzantine agreement under onurrent omposition, it

is impossible for the parties to generate unique session identi�ers by themselves (beause if they

ould, then they ould ahieve authentiated Byzantine agreement, in ontradition to the �rst

result). In ontrast, we do generate unique session identi�ers, without any external trusted help

and for any number of orrupted parties. The reason that no ontradition atually exists is due to

the fat that the requirements on termination are di�erent. That is, the de�nition of authentiated

Byzantine agreement requires that the parties always suessfully obtain output. In ontrast, in our

setting there is no requirement that the protool will suessfully onlude. Rather, it is guaranteed

that if a party onludes the setup protool, then it has obtained a unique session identi�er. (We

also present a variant of the setup protool where suessful termination is guaranteed, but only if

the initiator is honest.)

Seurity in the initiator model. As we have mentioned, in this paper, we onsider a model

where a protool initiator hooses the set of partiipating parties as it wishes. It should be noted

that in suh a ase, an adversarial initiator an hoose this set so that only one party is honest. It

is important to be aware of this beause in some ases this an have undesired e�ets. For example,

onsider a seure protool for polling the voting patterns of the population. If only one party in

the poll is honest, then the adversary an learn the exat vote of this party.

The framework of universal omposability. We refer the reader to [1, 2℄ for a desription

and de�nition of the framework of universal omposability. Due to di�ering versions of the frame-

work regarding message delivery, we briey larify what we onsider here. In the ideal model, all

messages between the honest parties and the ideal funtionality are delivered immediately without

2

any involvement from the adversary. (This is the model onsidered in the latest version of [1℄.)

In the basi real model that we onsider, the adversary sees all the messages sent, and delivers

or bloks these messages at will (but annot modify them). However, we will also onsider a real

model where message delivery is guaranteed between honest parties. We note that in this work we

onsider adaptive, maliious adversaries.

2 The Initialization and Setup Problem

2.1 Problem De�nition

In a deentralized network, any party an initiate a protool exeution by inviting some subset of

parties to partiipate. Of ourse, some of these parties may not want to partiipate, and may hoose

not to. This models real settings where parties notify the initiator of their interest to partiipate,

and the initiator then hooses some subset of interested parties as it wishes. The naive way to

implement suh a senario is to simply have this protool initiator send an \initiate" message to all

the parties who will partiipate in the exeution. However, this initiate message must also inlude

a unique session identi�er, the identities of all partiipating parties, and the spei�ation of the

funtionality that is to be alled. We note that seure protools all assume that this information

is a-priori known to all parties; the framework of universal omposability is no exeption. Thus,

a dishonest initiator may provide di�erent sets of identities to di�erent parties and may hoose a

session identi�er that has already been used in the past (or is even being used in a onurrently

running session; see [4℄ for an example of where opying session identi�ers an be very detrimental

to protools that assume uniqueness). We therefore de�ne an initialize funtionality, denoted F

init

,

that prevents the adversary from suh behavior. In this funtionality, the initiating party hooses

the set of partiipating parties and the spei�ation of the funtionality to be omputed by these

parties. However, the session identi�er is hosen by the adversary, with the only limitation that

it must be unique. Sine uniqueness is the only requirement for session identi�ers, allowing the

adversary the power to hoose the spei� unique string does not ompromise the seurity of the

system. We stress that the output of the initialize funtionality is suh that all the parties reeive

the same session identi�er, the same set of identities, and the same funtionality spei�ation. This

therefore provides the parties with the setup information needed for running a seure protool. The

funtionality is de�ned in Figure 1.

We note that the adversary S has full ontrol over whih parties reeive the invoke message from

the funtionality. In fat, a party only reeives output after S expliitly instruts the funtionality

to send it to the party. This orresponds to the basi model onsidered for the UC framework

where message delivery is not guaranteed in the real model. In this ase the adversary an always

prevent a party from reeiving output by bloking its last message in the protool. The ideal

funtionality therefore also provides the adversary with this apability. The ase where message

delivery is guaranteed in the real model is dealt with in Setion 2.3.

Using the F

init

funtionality. Reall that the UC framework assumes that when a protool

� ontains an ideal all to a funtionality F , then all the parties have already agreed upon the

set of partiipating parties, the spei�ation of the funtionality they are alling, and the unique

session identi�er sid. Ensuring that this holds is seen to be the \responsibility" of the alling

protool �. In a deentralized network, the funtionality F

init

an be alled before the �rst all to

a funtionality F . Spei�ally, in order to initiate an exeution of F , the initiator �rst alls F

init

.

Then, after a party P

j

obtains output (invoke; 0; hsid; P

i

;P;Fi), it an proeed to all F with the

set of partiipating parties P and session identi�er sid.

3

Funtionality F

init

F

init

, with �xed session identi�er 0, runs in the universe with parties U and an adversary S. When

alled for the �rst time, it sets Hist = ;.

� Upon reeiving a value (initiate; 0; hP

i

;P ;Fi) from P

i

, where P � U , exeute the following:

1. Send (initiate; 0; hP

i

;P ;Fi) to S.

2. Upon reeiving bak (set-id; 0; hsid

0

; P

i

;P ;Fi) from S, do the following:

(a) If sid

0

2 Hist, hoose an arbitrary sid 62 Hist.

(b) If sid

0

62 Hist, set sid sid

0

.

() Update Hist Hist [fsidg.

(d) Send (invoke; 0; hsid; P

i

;P ;Fi) to S.

3. Upon reeiving a message (send-output; 0; hsid; P

i

;P ;Fi; P

j

) from S:

(a) If P

j

2 P and it has not yet been sent the invoke message with hsid; P

i

;P ;Fi, send

it (invoke; 0; hsid; P

i

;P ;Fi).

Figure 1: The Initialize Funtionality

We stress that there is only a single opy of the F

init

funtionality, and it has the �xed session

identi�er 0. (If it was neessary to agree upon a unique identi�er for every invoation of F

init

, then

we would have solved nothing.) Tehnially, we an use the same identi�er for every all to F

init

,

beause the funtionality does not need to assoiate di�erent messages from di�erent parties within

a single all. (If di�erent parties did send messages to F

init

in a single all, then some mehanism,

like a unique identi�er, would be needed to ensure that messages would be orretly assoiated.)

We note that for the interation between the funtionality and the adversary it suÆes for the

funtionality to \identify" the exeution via the values sent in the initiate message.

2.2 Protool Constrution

We now present a simple protool that seurely omputes F

init

in the UC framework. The basi idea

behind the protool is for the parties to jointly generate the session identi�er sid by onatenating

n-bit random strings (n denotes the seurity parameter). Then, a party will \aept" the �nal

sid only if its random string is inluded. This means that honest parties will only aept unique

identi�ers, beause an sid with an n-bit random string is unique exept with negligible probability.

The set of partiipating parties and the funtionality spei�ation are also appended to the session

identi�er sid, in order to ensure that all parties that onlude with the same sid agree on the

partiipating parties and funtionality spei�ation. We note that a orrupted initiator an ause

di�erent parties to onlude with di�erent identi�ers. However, this is equivalent to the initiator

running multiple setups with di�erent parties. Sine it an always do this in the ideal model, it is

also allowed to do so in a real protool exeution. The protool is presented in Figure 2.

Theorem 1 Protool �

init

seurely omputes the funtionality F

init

in the UC framework, in the

presene of adaptive, maliious adversaries and in an asynhronous model where message delivery

is not guaranteed.

4

Protool �

init

1. Upon input (initiate; 0; hP

i

;P ;Fi), party P

i

hooses a random value sid

i

2

R

f0; 1g

n

and sends

(start

�

init

; sid

i

; P

i

;P ;F) to all parties P

j

2 P . (Identi�er sid

i

is used to enable the parties to

distinguish messages from this exeution from messages from other exeutions.)

2. Eah party P

j

that reeives the start

�

init

message hooses a random string r

j

2

R

f0; 1g

n

and

sends (sid

i

; r

j

) to P

i

. (If P

j

62 P then it ignores the message.)

3. Denote the parties in P by P

j

1

; : : : ; P

j

`

, where the parties are sorted in asending order of

identities (i.e., j

i

< j

i+1

for every i).

Then, when party P

i

reeives the (sid

i

; r

j

) messages from all parties P

j

2 P , it hooses

r

i

2

R

f0; 1g

n

, sets sid = r

i

; r

j

1

; : : : ; r

j

`

;P ;F and sends (sid

i

; sid) to all parties P

j

2 P .

4. When party P

j

reeives (sid

i

; sid) from P

i

it heks the following:

(a) The set of parties and funtionality desription appearing at the end of sid equals the

set P and funtionality F that it reeived from P

i

in the �rst message.

(b) The random value r

j

that P

j

hose appears in sid in its \orret" position.

If both these hold, then P

j

outputs (invoke; 0; hsid; P

i

;P ;Fi). Otherwise, it outputs nothing.

Figure 2: Protool for seurely omputing the F

init

funtionality

Proof: Let A be a real-model adversary. Then, we onstrut an ideal-model simulator/adversary S

suh that no environment Z an distinguish a real exeution of �

init

with A from an ideal exeution

of F

init

with S.

The simulator S invokes A and emulates an exeution of �

init

, while playing all of the unor-

rupted parties. We distinguish between the ase that the initiating party P

i

is orrupted at the

time that it sends its start

�

init

message to the parties in P, from the ase that it is unorrupted:

P

i

is orrupted: In this ase, A sends a series of start

�

init

messages to honest parties, in the

name of P

i

. For every suh (start

�

init

; sid

i

; P

i

;P;F) message that A sends an honest party P

j

,

simulator S hooses r

j

2

R

f0; 1g

n

and internally sends (sid

i

; r

j

) bak to A. (S simulates P

j

sending this reply, unless P

j

62 P, in whih ase S does nothing.)

When A sends another message (sid

i

; sid) to the honest P

j

in the emulation, simulator S heks

that the random string r

j

appears in sid in the orret position and that P and F appear at

the end of sid. If no, then it does nothing. Otherwise, there are two possibilities:

1. S has already sent a (set-id; 0; hsid; P

i

;P;Fi) message to F

init

:

In this ase, S sends the message (send-output; 0; hsid; P

i

;P;Fi; P

j

) to F

init

, instruting it

to send output to P

j

.

2. S has not yet sent a (set-id; 0; hsid; P

i

;P;Fi) message to F

init

: In this ase, S �rst instruts

P

i

to send (initiate; 0; hP

i

;P;Fi) to the funtionality F

init

. Funtionality F

init

then sends

(initiate; 0; hP

i

;P;Fi) to S, and S replies with (set-id; 0; hsid; P

i

;P;Fi), for the above sid.

Finally, after S reeives bak the (invoke; 0; hsid; P

i

;P;Fi) from F

init

, it sends the message

(send-output; 0; hsid; P

i

;P;Fi; P

j

) to F

init

, instruting it to send output to P

j

.

P

i

is unorrupted: In this ase, S reeives a message (initiate; 0; hP

i

;P;Fi) from F

init

. Then,

S simulates P

i

sending (start

�

init

; sid

i

; P

i

;P;F) to all parties P

j

2 P, for a random sid

i

2

R

5

f0; 1g

n

. In addition, S simulates all the honest parties P

j

replying with (sid

i

; r

j

). Then, S

waits until A delivers all of the (sid

i

; r

j

) messages from the honest parties to P

i

, and until A

sends (sid

i

; r

j

0

) messages to P

i

from all the orrupted parties P

j

0

. Following this, S omputes

sid

0

= r

i

; r

j

1

; : : : ; r

j

`

;P;F and sends (set-id; 0; hsid

0

; P

i

;P;Fi) to F

init

.

Now, let sid = sid

0

. Then, S simulates P

i

writing (sid

i

; sid) messages on its outgoing ommuni-

ation tape for all P

j

2 P. Then, S sends a (send-output; 0; hsid; P

i

;P;Fi; P

j

) message to F

init

whenever A delivers the (sid

i

; sid) message from P

i

to P

j

in the emulation.

Dealing with orruptions: Notie that in the above-desribed simulation, S simply plays the

roles of all the honest parties and sends F

init

the initiatemessage with the sid that is generated by

the protool. Therefore, if A orrupts P

i

at sometime during the exeution, S simply ontinues

by following the instrutions for the ase that P

i

is orrupted. Likewise, orruptions of parties

P

j

(j 6= i) are dealt with in a straightforward way (they have no seret information, so there is

no private state to be revealed).

Analysis of S: We now prove that the simulator S is suh that no environment Z an distinguish

between an ideal exeution with F

init

and S, from a real exeution of Protool �

init

with A. First

note that the honest parties have no seret information. Therefore, S perfetly simulates a real

exeution of Protool �

init

for A. Furthermore, assuming that the identi�er sid sent by S is always

unique, the honest parties all output the same values as they would in a real exeution. This is the

ase beause the sid

0

value sent by S in the set-id message to F

init

is simply the sid value that the

honest parties would reeive from P

i

in a real exeution. Thus, it remains to show that the value

sid

0

sent by S is unique, exept with negligible probability (we prove this for the ase that at least

one honest party is partiipating, otherwise it is of no signi�ane).

In the ase that the initiator P

i

is orrupted and some P

j

is not orrupted, simulator S only sends

(set-id; 0; hsid

0

; P

i

;P;Fi) to F

init

if the value r

j

appears in sid

0

in the orret position. Reall that

r

j

2

R

f0; 1g

n

was hosen randomly by S. Therefore, the probability that this sid

0

was previously

used is at most time(A)=2

n

, where time(A) denotes the running time of adversary A. Sine A runs

in polynomial time, this probability is negligible. Next, if P

i

is not orrupted, then sid

0

begins with

a random value r

i

2

R

f0; 1g

n

. As above, this means that the probability that sid

0

has been used

before is negligible.

In order to omplete the proof, note that S instruts F

init

to deliver output to a party P

j

at

the same time that A delivers the message (sid

i

; sid) from P

i

to P

j

in the emulation. Therefore,

honest parties obtain outputs at the same time in a real and ideal exeution.

Notie that in the ase that the initiator is orrupted, Protool �

init

provides almost no \agreement"

guarantees. Spei�ally, every honest party may end up with a di�erent session identi�er. However,

this does not ontradit the seurity of the protool beause in the ideal model, a orrupted initiator

may initiate many di�erent sessions. Furthermore, the adversary an deliver output to only one

honest party in eah of these sessions. This is equivalent to the situation in the real model where

eah party onludes with a di�erent session identi�er.

2.3 Protool Initialization With Guaranteed Termination

The real model that we have onsidered until now is one where the adversary has ontrol over all

message delivery between the honest parties. In this ase, the adversary an always prevent an

honest party from reeiving output, by not delivering its last message in the protool. As we have

mentioned, the de�nition of F

init

for the ideal model therefore expliitly allows the adversary S to

deide when (if at all) an honest party reeives its output. In this setion, we onsider a real model

6

where message delivery is guaranteed between honest parties. For simpliity, we assume that the

network is synhronous, although we ould also onsider a partially asynhronous network where

messages an be delayed for at most � units of time, for a given and publily known �. In this ase,

we would like to ensure suessful termination of the protool, with all parties reeiving output.

This will ensure that if the seure protool to be run following the initialization guarantees output

delivery, then the omposition of Protool �

init

with the seure protool will also guarantee output

delivery.

We �rst modify F

init

so that output delivery is guaranteed. This annot be done in a naive way

beause then Byzantine (or authentiated Byzantine) agreement would be implied, in ontradition

to known impossibility results [3, 5, 4℄. Rather, we require that if the initiator is honest, then it

is guaranteed that all the honest parties onlude with the same session identi�er, the same set

of partiipating parties and the same funtionality spei�ation. In ontrast, if the initiator is

not honest, then the e�et ahieved is like in the previous setion. (That is, the honest parties

may onlude with di�erent session identi�ers, but the identi�ers are always unique and ful�ll the

requirements of a seure setup.)

Modi�ations to funtionality F

init

. We modify F

init

as follows. First, the initiator P

i

sends

a unique identi�er sid

0

in its initiate message to the funtionality. Then, if the adversary S does

not reply with sid

0

in the next round and sid

0

=2 Hist, the session identi�er in the output is set

to sid

0

. If the adversary S does reply with sid

0

, then Step 2 of F

init

remains the same. The

seond modi�ation is that instead of S instruting the funtionality to send-output in Step 3, these

instrutions are provided by the initiator. Of ourse, an honest initiator is expeted to hoose sid

0

randomly (to ensure uniqueness) and to instrut the funtionality to send output to all parties.

The result of the above is that in the ase that the initiator P

i

is honest, suessful termination

is guaranteed (i.e., all parties reeive (invoke; 0; hsid; P

i

;P;Fi) where sid is a unique identi�er and

P;F are as hosen by P

i

. On the other hand, if the initiator is orrupted, then the same e�et as

the original F

init

is ahieved.

Modi�ations to protool �

init

. With a slight modi�ation, Protool �

init

an be made to

seurely realize the modi�ed initialize funtionality. The required modi�ation to the protool is

in Step 3 (see Figure 2): Instead of Party P

i

waiting until it reeives all of the (sid

i

; r

j

) messages,

it waits one round (reall, we assume here that the network is synhronous). If a party P

j

does

not send its message in the next round, then P

i

hooses r

j

2

R

f0; 1g

n

and ontinues as if P

j

sent

(sid

i

; r

j

). Notie that one P

i

sends the (sid

i

; r

j

) messages, all parties reeive output. Therefore,

this modi�ation to Protool �

init

ensures suessful termination when the initiator P

i

is honest.

Referenes

[1℄ R. Canetti. Universally Composable Seurity: A New Paradigm for Crypto-

graphi Protools. In 42nd FOCS, pages 136{145, 2001. Full version available at

http://eprint.iar.org/2000/067.

[2℄ R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party and

Multi-Party Computation. In 34th STOC, pages 494{503, 2002.

[3℄ L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM Transa-

tions on Programming Languages and Systems, 4(3):382{401, 1982.

7

[4℄ Y. Lindell, A. Lysysanskaya and T. Rabin. On the Composition of Authentiated Byzantine

Agreement. In 34th STOC, pages 514{523, 2002.

[5℄ M. Pease, R. Shostak, and L. Lamport. Reahing Agreement in the Presene of Faults.

Journal of the ACM, 27(2):228{234, 1980.

8

